diff --git a/lab1/report/report.tex b/lab1/report/report.tex index 2fb2bc7..bd4b6e2 100644 --- a/lab1/report/report.tex +++ b/lab1/report/report.tex @@ -197,7 +197,19 @@ \label{fig:fon2} \end{figure} + \subsection{Паттерны, сходимость и классификация клеточных автоматов} + Паттерны -- это устойчивые структуры, которые формируются в процессе эволюции клеточного автомата. В зависимости от правил, эти структуры могут быть статичными (не изменяются с течением времени), циклическими (повторяются через несколько итераций), или распространяющимися (разрастаются в пространстве). + Сходимость -- это поведение клеточного автомата, при котором его состояние стабилизируется спустя некоторое количество итераций. Это может быть достижение статического состояния, циклического паттерна или полное угасание активности (все клетки становятся "мёртвыми"). + + Стивен Вольфрам в своей книге A New Kind of Science~\cite{wolfram} предложил 4 класса, на которые все клеточные автоматы могут быть разделены в зависимости от типа их эволюции: + \begin{itemize} + \item Класс 1: Результатом эволюции начальных условий является быстрый переход к гомогенной стабильности. Любые негомогенные конструкции быстро исчезают. + \item Класс 2: Результатом эволюции начальных условий является быстрый переход в неизменяемое негомогенное состояние либо возникновение циклической последовательности. Большинство структур начальных условий быстро исчезает, но некоторые остаются. Локальные изменения в начальных условиях оказывают локальный характер на дальнейший ход эволюции системы. + \item Класс 3: Результатом эволюции почти всех начальных условий являются псевдо-случайные, хаотические последовательности. Любые стабильные структуры, которые возникают почти сразу же уничтожаются окружающим их шумом. Локальные изменения в начальных условиях оказывают неопределяемое влияние на ход эволюции системы. + \item Класс 4: Результатом эволюции являются структуры, которые взаимодействуют сложным образом с формированием локальных, устойчивых структур. В результате эволюции могут получаться некоторые последовательности Класса 2, описанного выше. Локальные изменения в начальных условиях оказывают неопределяемое влияние на ход эволюции системы. Некоторые клеточные автоматы этого класса обладают свойством универсальности по Тьюрингу. + \end{itemize} + \newpage \section{Особенности реализации} @@ -494,7 +506,7 @@ int main() \begin{thebibliography}{0} \bibitem{vostrov} Востров А. В, <<Теория алгоритмов>> URL: \url{https://tema.spbstu.ru/algorithm/}, Дата обращения: 01.12.2024 - \bibitem{novikov} - Новиков, Ф. А. <<Дискретная математика для программистов>>. — 3-е изд. — Санкт-Петербург: Питер, 2009. — 383 с. + \bibitem{wolfram} + Wolfram, Stephen <>. — Wolfram Media (2002) — 1197 с. \end{thebibliography} \end{document} \ No newline at end of file