Сравнение используемых алгоритмов
This commit is contained in:
22
report.tex
22
report.tex
@@ -189,6 +189,28 @@
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
\newpage
|
||||
\begin{table}[h!]
|
||||
\centering
|
||||
\caption{Machine learning algorithms comparision.}
|
||||
\footnotesize
|
||||
\begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|c|X|c|c|}
|
||||
\hline
|
||||
\textbf{Article} & \textbf{DT} & \textbf{NB} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} \\
|
||||
\hline
|
||||
Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~\cite{paclitaxel} & + & + & + & + & + & & & & & \\
|
||||
\hline
|
||||
Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~\cite{heterogeneity} & & & & & & + & & & & \\
|
||||
\hline
|
||||
Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~\cite{mitochondria} & & & + & + & + & + & + & & + & + \\
|
||||
\hline
|
||||
Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~\cite{sers} & & & & & & & & + & & \\
|
||||
\hline
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
% & \textbf{PCA-LDA}
|
||||
|
||||
\newpage
|
||||
|
||||
\begin{table}[h!]
|
||||
|
||||
Reference in New Issue
Block a user