From 3202c9e4e86970371e0834cccab58244198de530 Mon Sep 17 00:00:00 2001 From: Arity-T Date: Thu, 31 Oct 2024 17:56:02 +0300 Subject: [PATCH] =?UTF-8?q?platinum=20=D0=B2=20=D1=82=D0=B0=D0=B1=D0=BB?= =?UTF-8?q?=D0=B8=D1=86=D0=B5=20=D1=81=20ml=20=D0=B0=D0=BB=D0=B3=D0=BE?= =?UTF-8?q?=D1=80=D0=B8=D1=82=D0=BC=D0=B0=D0=BC=D0=B8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- report.tex | 35 +++++++++++++++++++++++++++++------ 1 file changed, 29 insertions(+), 6 deletions(-) diff --git a/report.tex b/report.tex index 1796c7b..5f80129 100644 --- a/report.tex +++ b/report.tex @@ -208,21 +208,36 @@ \centering \caption{Machine learning algorithms comparision.} \footnotesize - \begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|c|X|c|c|} + \begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|} \hline - \textbf{Article} & \textbf{DT} & \textbf{NB} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} \\ + \textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\ \hline - Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~\cite{paclitaxel} & + & + & + & + & + & & & & & \\ + Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~\cite{paclitaxel} & + & & + & + & + & & & & & \\ \hline - Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~\cite{heterogeneity} & & & & & & + & & & & \\ + Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~\cite{heterogeneity} & & & & & + & & & & & \\ \hline - Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~\cite{mitochondria} & & & + & + & + & + & + & & + & + \\ + Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~\cite{mitochondria} & & + & + & + & + & + & & + & + & \\ \hline - Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~\cite{sers} & & & & & & & & + & & \\ + Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~\cite{sers} & & & & & & & + & & & \\ \hline \end{tabularx} \end{table} + \addtocounter{table}{-1} + \begin{table}[h!] + \centering + \caption{Machine learning algorithms comparision (continued).} + \footnotesize + \begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|} + \hline + \textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\ + \hline + A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~\cite{platinum} & & & & & + & & & & & + \\ + \hline + \end{tabularx} + \end{table} + + \newpage \begin{table}[h!] @@ -263,6 +278,14 @@ % \addcontentsline{toc}{section}{Conclusion} % Conclusion text + \newpage + \phantom{text} + \newpage + \phantom{text} + \newpage + \phantom{text} + \newpage + \phantom{text} \newpage \phantom{text} \newpage