Таблица с алгоритмами на А3
This commit is contained in:
58
report.tex
58
report.tex
@@ -14,6 +14,8 @@
|
||||
\usepackage{moreverb} %для печати в листинге исходного кода программ
|
||||
\usepackage{graphicx}
|
||||
|
||||
\usepackage{pdfpages}
|
||||
|
||||
\usepackage{array}
|
||||
\usepackage{multirow}
|
||||
|
||||
@@ -167,7 +169,7 @@
|
||||
% \section{Results}
|
||||
|
||||
|
||||
|
||||
\newpage
|
||||
\begin{table}[h!]
|
||||
\centering
|
||||
\caption{Methods used in research papers.}
|
||||
@@ -189,6 +191,7 @@
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
\newpage
|
||||
\addtocounter{table}{-1}
|
||||
\begin{table}[h!]
|
||||
\centering
|
||||
@@ -206,42 +209,12 @@
|
||||
\hline
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
\newpage
|
||||
\begin{table}[h!]
|
||||
\centering
|
||||
\caption{Machine learning algorithms comparision.}
|
||||
\footnotesize
|
||||
\begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|}
|
||||
\hline
|
||||
\textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\
|
||||
\hline
|
||||
Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~\cite{paclitaxel} & + & & + & + & + & & & & & \\
|
||||
\hline
|
||||
Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~\cite{heterogeneity} & & & & & + & & & & & \\
|
||||
\hline
|
||||
Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~\cite{mitochondria} & & + & + & + & + & + & & + & + & \\
|
||||
\hline
|
||||
Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~\cite{sers} & & & & & & & + & & & \\
|
||||
\hline
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
\addtocounter{table}{-1}
|
||||
\begin{table}[h!]
|
||||
\centering
|
||||
\caption{Machine learning algorithms comparision (continued).}
|
||||
\footnotesize
|
||||
\begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|}
|
||||
\hline
|
||||
\textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\
|
||||
\hline
|
||||
A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~\cite{platinum} & & & & & + & & & & & + \\
|
||||
\hline
|
||||
Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~\cite{kras} & + & + & + & & & + & & & & \\
|
||||
\hline
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
\newpage
|
||||
\addtocounter{table}{1}
|
||||
\includepdf[pages={1}, fitpaper, pagecommand={
|
||||
\thispagestyle{empty}
|
||||
}]{ml_table/ml_table.pdf}
|
||||
|
||||
|
||||
\newpage
|
||||
@@ -266,6 +239,7 @@
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
\newpage
|
||||
\addtocounter{table}{-1}
|
||||
\begin{table}[h!]
|
||||
\centering
|
||||
@@ -288,18 +262,6 @@
|
||||
% \addcontentsline{toc}{section}{Conclusion}
|
||||
% Conclusion text
|
||||
|
||||
\newpage
|
||||
\phantom{text}
|
||||
\newpage
|
||||
\phantom{text}
|
||||
\newpage
|
||||
\phantom{text}
|
||||
\newpage
|
||||
\phantom{text}
|
||||
\newpage
|
||||
\phantom{text}
|
||||
\newpage
|
||||
\phantom{text}
|
||||
\newpage
|
||||
% \section*{Literature}
|
||||
% \addcontentsline{toc}{section}{Literature}
|
||||
|
||||
Reference in New Issue
Block a user