references

This commit is contained in:
2024-10-15 13:58:19 +03:00
parent d25577440b
commit a4a687b2ef

View File

@@ -105,7 +105,7 @@
\begin{tabular}{lrrl} \begin{tabular}{lrrl}
\!\!\!Student, & \hspace{2cm} & & \\ \!\!\!Student, & \hspace{2cm} & & \\
\!\!\!group 5130201/20102 & \hspace{2cm} & \underline{\hspace{3cm}} &Tishenko А. А. \\\\ \!\!\!group 5130201/20102 & \hspace{2cm} & \underline{\hspace{3cm}} &Tishenko А. А. \\\\
\!\!\!Supervisor & \hspace{2cm} & \underline{\hspace{3cm}} & Motorin D. E. \\\\ \!\!\!Supervisor, Ph. D. & \hspace{2cm} & \underline{\hspace{3cm}} & Motorin D. E. \\\\
&&\hspace{4cm} &&\hspace{4cm}
\end{tabular} \end{tabular}
\begin{flushright} \begin{flushright}
@@ -134,9 +134,23 @@
% \subsection{Первый подраздел} % \subsection{Первый подраздел}
% Текст первого подраздела % Текст первого подраздела
% \section*{Заключение} % \section*{Conclusion}
% \addcontentsline{toc}{section}{Conclusion}
% Conclusion text
% \addcontentsline{toc}{section}{Заключение} \newpage
% \section*{Literature}
% \addcontentsline{toc}{section}{Literature}
% Текст заключения \vspace{-1.5cm}
\begin{thebibliography}{0}
\bibitem{paclitaxel}
Lu Xin, Wen Xiao, Huanzhi Zhang, Yakun Liu, Xiaoping Li, Pietro Ferraro, Feng Pan, Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning, 2024.
\bibitem{heterogeneity}
Qiuli Zhu, Hua Dai, Feng Qiu, Weiming Lou, Xin Wang, Libin Deng, Chao Shi, Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer, 2024.
\bibitem{mitochondria}
Ziyu Liu, Zahra Zeinalzadeh, Tao Huang, Yingying Han, Lushan Peng, Dan Wang, Zongjiang Zhou, DIABATE Ousmane, Junpu Wang, Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer, 2024.
\bibitem{sers}
Jun Zhang, Youliang Weng, Yi Liu, Nan Wang, Shangyuan Feng, Sufang Qiu, Duo Lin, Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction, 2024.
\end{thebibliography}
\end{document} \end{document}