Отчёт

This commit is contained in:
2025-11-08 23:22:02 +03:00
parent 4b2398ae05
commit 7ec38a3385
15 changed files with 711 additions and 0 deletions

6
lab4/report/.gitignore vendored Normal file
View File

@@ -0,0 +1,6 @@
*
!**/
!.gitignore
!report.tex
!img/**/*.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 229 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 232 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 256 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 278 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 229 KiB

705
lab4/report/report.tex Normal file
View File

@@ -0,0 +1,705 @@
\documentclass[a4paper, final]{article}
%\usepackage{literat} % Нормальные шрифты
\usepackage[14pt]{extsizes} % для того чтобы задать нестандартный 14-ый размер шрифта
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage[T2A]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[russian]{babel}
\usepackage{amsmath}
\usepackage[left=25mm, top=20mm, right=20mm, bottom=20mm, footskip=10mm]{geometry}
\usepackage{ragged2e} %для растягивания по ширине
\usepackage{setspace} %для межстрочно го интервала
\usepackage{moreverb} %для работы с листингами
\usepackage{indentfirst} % для абзацного отступа
\usepackage{moreverb} %для печати в листинге исходного кода программ
\usepackage{pdfpages} %для вставки других pdf файлов
\usepackage{tikz}
\usepackage{graphicx}
\usepackage{afterpage}
\usepackage{longtable}
\usepackage{float}
\usepackage{xcolor}
% \usepackage[paper=A4,DIV=12]{typearea}
\usepackage{pdflscape}
% \usepackage{lscape}
\usepackage{array}
\usepackage{multirow}
\renewcommand\verbatimtabsize{4\relax}
\renewcommand\listingoffset{0.2em} %отступ от номеров строк в листинге
\renewcommand{\arraystretch}{1.4} % изменяю высоту строки в таблице
\usepackage[font=small, singlelinecheck=false, justification=centering, format=plain, labelsep=period]{caption} %для настройки заголовка таблицы
\usepackage{listings} %листинги
\usepackage{xcolor} % цвета
\usepackage{hyperref}% для гиперссылок
\usepackage{enumitem} %для перечислений
\newcommand{\specialcell}[2][l]{\begin{tabular}[#1]{@{}l@{}}#2\end{tabular}}
\setlist[enumerate,itemize]{leftmargin=1.2cm} %отступ в перечислениях
\hypersetup{colorlinks,
allcolors=[RGB]{010 090 200}} %красивые гиперссылки (не красные)
% подгружаемые языки — подробнее в документации listings (это всё для листингов)
% включаем кириллицу и добавляем кое−какие опции
\lstset{tabsize=2,
breaklines,
basicstyle=\footnotesize,
columns=fullflexible,
flexiblecolumns,
numbers=left,
numberstyle={\footnotesize},
keywordstyle=\color{blue},
inputencoding=cp1251,
extendedchars=true
}
\textheight=24cm % высота текста
\textwidth=16cm % ширина текста
\oddsidemargin=0pt % отступ от левого края
\topmargin=-1.5cm % отступ от верхнего края
\parindent=24pt % абзацный отступ
\parskip=5pt % интервал между абзацами
\tolerance=2000 % терпимость к "жидким" строкам
\flushbottom % выравнивание высоты страниц
% Настройка листингов
\lstset{
language=python,
extendedchars=\true,
inputencoding=utf8,
keepspaces=true,
% captionpos=b, % подписи листингов снизу
}
\begin{document} % начало документа
% НАЧАЛО ТИТУЛЬНОГО ЛИСТА
\begin{center}
\hfill \break
\hfill \break
\normalsize{МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ\\
федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»\\[10pt]}
\normalsize{Институт компьютерных наук и кибербезопасности}\\[10pt]
\normalsize{Высшая школа технологий искусственного интеллекта}\\[10pt]
\normalsize{Направление: 02.03.01 <<Математика и компьютерные науки>>}\\
\hfill \break
\hfill \break
\hfill \break
\hfill \break
\large{Лабораторная работа №4}\\
\large{по дисциплине}\\
\large{<<Генетические алгоритмы>>}\\
\large{Вариант 18}\\
% \hfill \break
\hfill \break
\end{center}
\small{
\begin{tabular}{lrrl}
\!\!\!Студент, & \hspace{2cm} & & \\
\!\!\!группы 5130201/20101 & \hspace{2cm} & \underline{\hspace{3cm}} &Тищенко А. А. \\\\
\!\!\!Преподаватель & \hspace{2cm} & \underline{\hspace{3cm}} & Большаков А. А. \\\\
&&\hspace{4cm}
\end{tabular}
\begin{flushright}
<<\underline{\hspace{1cm}}>>\underline{\hspace{2.5cm}} 2025г.
\end{flushright}
}
\hfill \break
% \hfill \break
\begin{center} \small{Санкт-Петербург, 2025} \end{center}
\thispagestyle{empty} % выключаем отображение номера для этой страницы
% КОНЕЦ ТИТУЛЬНОГО ЛИСТА
\newpage
\tableofcontents
\newpage
\section {Постановка задачи}
В данной работе были поставлены следующие задачи:
\begin{itemize}
\item Разработать эволюционный алгоритм, реализующий ГП для нахождения заданной по варианту функции.
\begin{itemize}
\item Структура для представления программы древовидное представление.
\item Терминальное множество: переменные $x_1, x_2, x_3, \ldots, x_n$, и константы в соответствии с заданием по варианту.
\item Функциональное множество: $+$, $-$, $*$, $/$, $abs()$, $sin()$, $cos()$, $exp()$, возведение в степень.
\item Фитнесс-функция мера близости между реальными значениями выхода и требуемыми.
\end{itemize}
\item Представить графически найденное решение на каждой итерации.
\item Сравнить найденное решение с представленным в условии задачи.
\end{itemize}
\textbf{Индивидуальное задание вариант 18:}
\textbf{Дано:} Функция
$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{i} x_j^2, \text{ где } x_j \in [-5.536, 5.536] \text{ для всех } j = 1, \ldots, n, \text{ а } n = 8.$$
\newpage
\section{Теоретические сведения}
\subsection{Генетическое программирование}
\textbf{Генетическое программирование} (ГП) — разновидность эволюционных алгоритмов, в которых особь представляет собой программу, автоматически создаваемую для решения задачи. В отличие от генетических алгоритмов с фиксированной структурой хромосом, в ГП особи имеют переменную длину, что требует специальных методов кодирования, инициализации и генетических операторов. Ключевая идея ГП — представление программы на высоком уровне абстракции с учётом структуры компьютерных программ.
Оценка программ выполняется с помощью фитнесс-функции, отражающей степень соответствия решения требованиям задачи. Обычно используются метрики ошибки: среднеквадратичная ошибка, абсолютная ошибка или другие функции рассогласования между вычисленным и ожидаемым значением. Чем ниже ошибка, тем выше приспособленность особи.
\subsection{Терминальное и функциональное множества}
Программы формируются из \textbf{переменных}, \textbf{констант} и \textbf{функций}, связанных синтаксическими правилами. Для их описания необходимо определить два базовых множества:
\begin{itemize}
\item \textbf{Терминальное множество}, включающее константы и переменные.
\item \textbf{Функциональное множество}, состоящее из операторов и элементарных функций, таких как \( \exp(x) \), \( \sin(x) \) и других.
\end{itemize}
\subsubsection{Терминальное множество}
Терминальное множество включает:
\begin{enumerate}
\item Внешние входы программы.
\item Константы, используемые в программе.
\item Функции без аргументов.
\end{enumerate}
Термин «терминал» используется потому, что эти элементы соответствуют концевым (висячим) узлам в древовидных структурах и терминалам формальных грамматик. Терминал предоставляет численное значение, не требуя входных аргументов, то есть имеет нулевую арность. В классическом ГП на основе деревьев множество числовых констант выбирается для всей популяции и остается неизменным.
\subsubsection{Функциональное множество}
Функциональное множество состоит из операторов и различных функций. Оно может быть очень широким и включать типичные конструкции языков программирования, такие как:
\begin{itemize}
\item Логические функции: AND, OR, NOT;
\item Арифметические операции: $+$, $-$, $\times$, $\div$;
\item Трансцендентные функции: $\sin$, $\cos$, $\tan$, $\log$;
\item Операции присваивания: $a := 2$;
\item Условные операторы: if-then-else, switch/case;
\item Операторы переходов: go to, jump, call;
\item Операторы циклов: while, repeat-until, for;
\item Подпрограммы и пользовательские функции.
\end{itemize}
\subsection{Виды представления программ. Древовидное представление}
Среди наиболее распространённых структур для представления особей (потенциальных решений) в современном генетическом программировании можно выделить:
\begin{enumerate}
\item \textbf{Древовидное представление} — классический подход, где программы представляются в виде деревьев с операторами в узлах и терминалами в листьях
\item \textbf{Линейная структура} — программы записываются как последовательности инструкций, аналогично ассемблерному коду
\item \textbf{Графоподобная структура} — расширенное представление, допускающее множественные связи и переиспользование компонентов
\end{enumerate}
Древовидная форма представления является классической для ГП. Программа представляется в виде дерева, где внутренние узлы — это функции из функционального множества, а листья (терминальные узлы) — это переменные и константы из терминального
множества. Такая структура позволяет гибко работать с выражениями различной длины
и сложности
\subsection{Инициализация древовидных структур}
Сложность древовидных структур оценивается через максимальную глубину дерева $D_m$ или общее количество узлов. Процесс инициализации древовидных структур основан на случайном выборе функциональных и терминальных символов при заданном ограничении максимальной глубины. Рассмотрим пример с терминальным множеством:
Существуют два основных метода инициализации:
\subsubsection*{Полный метод (full)}
На всех уровнях, кроме последнего, выбираются только функциональные символы. Терминальные символы размещаются исключительно на уровне максимальной глубины $D_m$. Это гарантирует создание сбалансированных деревьев регулярной структуры.
\subsubsection*{Растущий метод (grow)}
На каждом шаге случайным образом выбирается либо функциональный, либо терминальный символ. Выбор терминала прекращает рост ветви, что приводит к формированию нерегулярных деревьев с различной глубиной листьев.
\subsection{Оператор кроссинговера на древовидных структурах}
Для древовидной формы представления программ в генетическом программировании применяются три основных типа операторов кроссинговера:
\begin{enumerate}[label=\alph*)]
\item Узловой ОК
\item Кроссинговер поддеревьев
\item Смешанный
\end{enumerate}
\subsubsection{Узловой оператор кроссинговера}
В узловом операторе кроссинговера выбираются два родителя (два дерева) и внутри них — узлы. Первый родитель называется доминантом, второй — рецессивом. Узлы могут различаться по типу, поэтому сначала необходимо проверить, что выбранные узлы взаимозаменяемы. Если типы не совпадают, выбирается другой узел во втором родителе, и проверка повторяется. После этого осуществляется обмен выбранных узлов между деревьями.
\subsubsection{Кроссинговер поддеревьев}
В кроссинговере поддеревьев не происходит обмен отдельными узлами, а определяется обмен поддеревьями. Он осуществляется следующим образом:
\begin{enumerate}
\item Выбираются два родителя (\textit{один — доминантный, другой — рецессивный}). Необходимо убедиться, что выбранные узлы взаимозаменяемы, то есть принадлежат одному типу. В противном случае выбирается другой узел в рецессивном дереве.
\item Производится обмен соответствующими поддеревьями.
\item Далее вычисляется предполагаемый размер потомков. Если он не превышает установленный порог, то обмен ветвями запоминается.
\end{enumerate}
При смешанном операторе кроссинговера для некоторых узлов выполняется узловой ОК, а для других - кроссинговер поддеревьев. В целом ОК выполняется следующим образом:
\begin{enumerate}
\item Выбор точек скрещивания \( P_1, P_2 \) в обоих родителях
\item Выбор типа кроссинговера с заданной вероятностью:
\begin{itemize}
\item Первый тип (обмен подграфами) с вероятностью \( P_G \)
\item Второй тип (линейный обмен) с вероятностью \( 1 - P_G \)
\end{itemize}
\item Если выбран первый тип и размер потомка не превышает порог, выполняется кроссинговер подграфами
\item Если выбран второй тип и размер потомка не превышает порог, выполняется линейный кроссинговер
\end{enumerate}
\subsection{Мутационные операторы для древовидных структур}
В контексте древовидного представления программ применяются следующие мутационные операторы:
\begin{enumerate}[label=\alph*)]
\item Мутация узлов (узловая)
\item Мутация с усечением (усекающая)
\item Мутация с ростом (растущая)
\item Hoist-мутация
\end{enumerate}
\textbf{Процедура узловой мутации} включает следующие шаги:
\begin{enumerate}
\item Случайный выбор целевого узла в дереве программы и идентификация его типа
\item Случайный выбор заменяющего узла того же типа из соответствующего множества (функционального или терминального)
\item Замена исходного узла на выбранный вариант
\end{enumerate}
\textbf{Алгоритм усекающей мутации} реализуется следующим образом:
\begin{enumerate}
\item Выбор узла, который будет подвергнут мутации
\item Случайный выбор терминального символа из допустимого множества
\item Удаление поддерева, корнем которого является выбранный узел
\item Замена удаленного поддерева терминальным символом
\end{enumerate}
\textbf{Алгоритм растущей мутации} реализуется следующим образом:
\begin{enumerate}
\item Определение узла, подвергаемого мутации
\item Если узел является терминальным, выбирается другой узел; для нетерминального узла производится удаление всех исходящих ветвей
\item Вычисление размера и сложности оставшейся части дерева
\item Генерация нового случайного поддерева, размер которого не превышает заданного порогового значения, и его размещение вместо удалённой части
\end{enumerate}
\textbf{Алгоритм Hoist-мутации} предназначен для борьбы с избыточным ростом деревьев (bloat) и реализуется следующим образом:
\begin{enumerate}
\item Случайный выбор поддерева с функциональным узлом в корне
\item Выбор случайного узла внутри этого поддерева (исключая корень выбранного поддерева)
\item Замена исходного поддерева на поддерево, начинающееся с выбранного внутреннего узла
\item В результате дерево становится короче, сохраняя при этом часть исходной структуры
\end{enumerate}
Данная мутация всегда уменьшает размер дерева, что помогает контролировать сложность программ и предотвращает неконтролируемый рост деревьев в процессе эволюции.
\textbf{Комбинированная мутация.} В реализованном алгоритме используется стратегия комбинированной мутации, которая на каждом шаге случайно выбирает один из четырёх описанных операторов с заданными вероятностями:
\begin{itemize}
\item Растущая мутация: $p = 0.40$
\item Узловая мутация: $p = 0.30$
\item Hoist-мутация: $p = 0.15$
\item Усекающая мутация: $p = 0.15$
\end{itemize}
Такой подход обеспечивает баланс между увеличением разнообразия популяции (растущая мутация), локальными изменениями (узловая мутация) и контролем размера деревьев (Hoist-мутация и усекающая мутация).
\subsection{Фитнес-функции в генетическом программировании}
В отличие от генетических алгоритмов, где фитнес-функция часто совпадает с исходной целевой функцией, в генетическом программировании фитнес-функция обычно измеряет степень соответствия между фактическими выходными значениями $y_i$ и целевыми значениями $d_i$. В качестве фитнес-функций часто используются метрики ошибок, такие как абсолютное отклонение или среднеквадратичная ошибка.
\newpage
\section{Особенности реализации}
В рамках работы создана библиотека \texttt{gp} для генетического программирования с древовидным представлением программ. Реализация выполнена на языке Python с использованием NumPy для векторизованных вычислений.
\subsection{Примитивы и операции (primitive.py, ops.py)}
Базовый класс \texttt{Primitive} представляет атомарные элементы дерева программы:
\begin{lstlisting}
@dataclass(frozen=True)
class Primitive:
name: str
arity: int # арность: 0 для терминалов, >0 для операций
operation_fn: OperationFn | None
\end{lstlisting}
Реализованы конструкторы для создания терминалов и операций: \texttt{Var(name: str)}, \texttt{Const(name: str, val: Value)}, \texttt{Operation(name: str, arity: int, fn)}.
Модуль \texttt{ops.py} содержит набор безопасных векторизованных операций. Функция \texttt{make\_safe} оборачивает операции для обработки некорректных значений:
\begin{lstlisting}
def make_safe(fn: Callable) -> Callable:
def wrapped(args: Sequence[Value]) -> Value:
with np.errstate(over="ignore", invalid="ignore",
divide="ignore", under="ignore"):
res = fn(args)
res = np.nan_to_num(res, nan=0.0, posinf=1e6, neginf=-1e6)
return np.clip(res, -1e6, 1e6)
return wrapped
\end{lstlisting}
Реализованы унарные операции (\texttt{NEG, SIN, COS, SQUARE, EXP}) и бинарные (\texttt{ADD, SUB, MUL, DIV, POW}). Для деления используется защита от деления на ноль, для возведения в степень -- ограничение показателя.
\subsection{Узлы дерева (node.py)}
Класс \texttt{Node} представляет узел дерева программы:
\begin{lstlisting}
class Node:
value: Primitive
parent: Node | None
children: list[Node]
\end{lstlisting}
Реализованы методы для манипуляций с деревом: \texttt{add\_child}, \texttt{replace\_child}, \texttt{copy\_subtree}. Метод \texttt{list\_nodes} возвращает список всех узлов поддерева (обход в глубину). Для контроля размера реализован метод \texttt{prune}, который усекает дерево до заданной глубины, заменяя операции на случайные терминалы.
Вычисление программы выполняется методом \texttt{eval}, который рекурсивно вычисляет значения поддеревьев и применяет операцию узла:
\begin{lstlisting}
def eval(self, context: Context) -> Value:
return self.value.eval(
[child.eval(context) for child in self.children],
context
)
\end{lstlisting}
Для кроссовера реализована функция \texttt{swap\_subtrees(a: Node, b: Node)}, которая обменивает два поддерева, корректно обновляя ссылки на родителей.
\subsection{Хромосомы (chromosome.py)}
Класс \texttt{Chromosome} инкапсулирует дерево программы вместе с множествами терминалов и операций:
\begin{lstlisting}
class Chromosome:
terminals: Sequence[Primitive]
operations: Sequence[Primitive]
root: Node
\end{lstlisting}
Реализованы два метода инициализации случайных деревьев:
\begin{itemize}
\item \texttt{full\_init(terminals, operations, max\_depth)} -- полная инициализация, где на каждом уровне до максимальной глубины выбираются только операции, а на последнем -- только терминалы.
\item \texttt{grow\_init(terminals, operations, max\_depth, terminal\_probability)} -- растущая инициализация с вероятностным выбором терминалов на каждом уровне, что создаёт деревья различной формы.
\end{itemize}
Комбинация этих методов (\textit{ramped half-and-half}) реализована в функции \texttt{ramped\_initialization}, которая создаёт начальную популяцию из деревьев различных глубин, используя оба метода поровну.
\subsection{Кроссовер (crossovers.py)}
Реализован оператор кроссовера поддеревьев:
\begin{lstlisting}
def crossover_subtree(parent1: Chromosome, parent2: Chromosome,
max_depth: int) -> tuple[Chromosome, Chromosome]:
\end{lstlisting}
Алгоритм выбирает случайные узлы в каждом родителе (кроме корня) и обменивает соответствующие поддеревья. Если глубина потомков превышает \texttt{max\_depth}, деревья усекаются методом \texttt{prune}.
\subsection{Мутации (mutations.py)}
Все мутации наследуются от базового класса \texttt{BaseMutation} с методом \texttt{mutate}. Реализованы четыре типа мутаций:
\begin{itemize}
\item \texttt{NodeReplacementMutation} -- заменяет узел на другой той же арности
\item \texttt{ShrinkMutation} -- заменяет случайную операцию на терминал (усечение)
\item \texttt{GrowMutation} -- заменяет узел на случайное поддерево с контролем глубины
\item \texttt{HoistMutation} -- заменяет поддерево на его случайную внутреннюю часть (уменьшает размер)
\end{itemize}
Класс \texttt{CombinedMutation} позволяет комбинировать мутации с заданными вероятностями, случайно выбирая одну из них на каждом шаге.
\subsection{Фитнес-функции (fitness.py)}
Базовый класс \texttt{BaseFitness} определяет интерфейс для вычисления ошибки:
\begin{lstlisting}
class BaseFitness(ABC):
def __call__(self, chromosome: Chromosome) -> float:
test_points = self.test_points_fn()
context = {t: test_points[:, i]
for i, t in enumerate(chromosome.terminals)}
predicted = chromosome.root.eval(context)
true_values = self.target_function(test_points)
return self.fitness_fn(chromosome, predicted, true_values)
\end{lstlisting}
Реализованы метрики ошибок: \texttt{MSEFitness} (среднеквадратичная), \texttt{RMSEFitness} (корень из MSE), \texttt{MAEFitness} (средняя абсолютная), \texttt{NRMSEFitness} (нормализованная RMSE). Класс \texttt{PenalizedFitness} добавляет штраф за размер и глубину дерева для борьбы с bloat.
\subsection{Селекция (selection.py)}
Реализованы три метода селекции:
\begin{itemize}
\item \texttt{roulette\_selection} -- селекция рулеткой со сдвигом для обработки отрицательных значений
\item \texttt{tournament\_selection(k)} -- турнирная селекция размера $k$
\item \texttt{stochastic\_tournament\_selection(k, p\_best)} -- стохастическая турнирная с вероятностью выбора лучшего
\end{itemize}
Для минимизации фитнес-функции используется инверсия знака при передаче фитнесов в селекцию.
\subsection{Генетический алгоритм (ga.py)}
Основная функция \texttt{genetic\_algorithm(config: GARunConfig)} реализует классический цикл ГА:
\begin{enumerate}
\item Вычисление фитнеса: \texttt{eval\_population(population, fitness\_func)}
\item Сохранение элиты (если \texttt{config.elitism > 0})
\item Селекция родителей: \texttt{config.selection\_fn(population, fitnesses)}
\item Кроссовер с вероятностью $p_c$: попарный обмен поддеревьями
\item Мутация с вероятностью $p_m$
\item Замещение популяции с восстановлением элиты
\end{enumerate}
Поддерживаются критерии остановки: по числу поколений, повторению лучшего результата, достижению порогового значения. История поколений сохраняется в виде списка объектов \texttt{Generation}.
Функция \texttt{save\_generation} использует библиотеку Graphviz для визуализации лучшего дерева поколения. Функция \texttt{plot\_fitness\_history} строит графики динамики лучших и средних значений фитнеса по поколениям и сохраняет их отдельно в \texttt{fitness\_best.png} и \texttt{fitness\_avg.png}.
\newpage
\section{Результаты работы}
На Рис.~\ref{fig:gen1}--\ref{fig:lastgen} представлены результаты работы генетического алгоритма со следующими параметрами:
\begin{itemize}
\item $N = 400$ -- размер популяции.
\item $10$ -- максимальная глубина дерева.
\item $p_c = 0.85$ -- вероятность кроссинговера поддеревьев.
\item $p_m = 0.15$ -- вероятность мутации, при этом использовалась комбинация различных вариантов:
\begin{itemize}
\item Растущая мутация: $p = 0.40$
\item Узловая мутация: $p = 0.30$
\item Hoist-мутация: $p = 0.15$
\item Усекающая мутация: $p = 0.15$
\end{itemize}
\item $200$ -- максимальное количество поколений.
\item $15$ -- количество "элитных" особей, переносимых без изменения в следующее поколение.
\item $3$ -- размер турнира для селекции.
\end{itemize}
На Рис.~\ref{fig:fitness_avg} и Рис.~\ref{fig:fitness_best} показаны графики изменения среднего и лучшего значения фитнеса по поколениям.
\begin{figure}[h!]
\centering
\includegraphics[width=0.95\linewidth]{img/results/fitness_avg.png}
\caption{График среднего значения фитнеса по поколениям}
\label{fig:fitness_avg}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.95\linewidth]{img/results/fitness_best.png}
\caption{График лучшего значения фитнеса по поколениям}
\label{fig:fitness_best}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.25\linewidth]{img/results/generation_001.png}
\caption{Лучшая особь поколения №1}
\label{fig:gen1}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.25\linewidth]{img/results/generation_010.png}
\caption{Лучшая особь поколения №10}
\label{fig:gen10}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.25\linewidth]{img/results/generation_020.png}
\caption{Лучшая особь поколения №20}
\label{fig:gen20}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.25\linewidth]{img/results/generation_030.png}
\caption{Лучшая особь поколения №30}
\label{fig:gen30}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.5\linewidth]{img/results/generation_040.png}
\caption{Лучшая особь поколения №40}
\label{fig:gen40}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=1\linewidth]{img/results/generation_050.png}
\caption{Лучшая особь поколения №50}
\label{fig:gen50}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=1\linewidth]{img/results/generation_100.png}
\caption{Лучшая особь поколения №100}
\label{fig:gen100}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=1\linewidth]{img/results/generation_150.png}
\caption{Лучшая особь поколения №150}
\label{fig:gen300}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=1\linewidth]{img/results/generation_200.png}
\caption{Лучшая особь поколения №200}
\label{fig:lastgen}
\end{figure}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\subsection{Анализ результатов}
\subsubsection*{Сравнение полученных деревьев}
На Рис.~\ref{fig:original_tree} представлено исходное дерево, на Рис.~\ref{fig:best_tree} представлено лучшее дерево, найденное алгоритмом.
\begin{figure}[h!]
\centering
\includegraphics[width=0.9\linewidth]{img/original_tree.png}
\caption{Дерево целевой функции}
\label{fig:original_tree}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.9\linewidth]{img/best_tree.png}
\caption{Лучшая особь, найденная алгоритмом}
\label{fig:best_tree}
\end{figure}
\subsubsection*{Сравнение полученных формул}
Перед сравнением, упростим исходную формулу, раскрыв знаки суммирования и перегруппировав слагаемые.
$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{i} x_j^2, \text{ для всех } j = 1, \ldots, n, \text{ при этом n }= 8.$$
$$
f(x) = \underbrace{(x_1^2)
+ (x_1^2 + x_2^2)
+ \ldots
+ (x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2)}_{\text{ всего } n = 8 \text{ слагаемых}}
$$
$$
f(x) = 8 x_1^2 + 7 x_2^2 + 6 x_3^2 + 5 x_4^2 + 4 x_5^2 + 3 x_6^2 + 2 x_7^2 + x_8^2
$$
В программе реализован метод преобразования особи (дереве) в строковую формулу. Вывод программы для лучшей особи представлен ниже:
\begin{lstlisting}[label={lst:}]
(((((pow2(x3) + ((pow2(x1) + pow2(x2)) + pow2(x1))) + pow2(x6)) +
((pow2(x2) + pow2(x2)) + ((sin(((x6 + x2) + sin(x6))) + ((pow2(x4) +
pow2(x2)) + pow2(x4))) + (((pow2(x3) + pow2(x4)) + pow2(x7)) + (pow2(x6) +
pow2(x4)))))) + (((pow2(x2) + ((pow2(x8) + pow2((x5 + x5))) + pow2(x3))) +
pow2(x1)) + (pow2(x6) + pow2(x4)))) + (((((pow2(x3) + pow2(x3))
+ ((pow2(x7) + pow2(x2)) + pow2(x1))) + pow2(x1)) + (pow2(x2) + ((pow2(x3) +
pow2(x1)) + pow2(x1)))) + (sin(x2) + pow2(x1))))
\end{lstlisting}
Программный метод автоматически обрамляет функции и переменные в скобки, чтобы правильно расставить приоритеты операций. Однако в данном случае они избыточны, поэтому их можно убрать:
\begin{lstlisting}[label={lst:}]
pow2(x3) + pow2(x1) + pow2(x2) + pow2(x1) + pow2(x6) + pow2(x2) + pow2(x2) +
sin(x6 + x2) + sin(x6) + pow2(x4) + pow2(x2) + pow2(x4) + pow2(x3) + pow2(x4) +
pow2(x7) + pow2(x6) + pow2(x4) + pow2(x2) + pow2(x8) + pow2(x5 + x5) + pow2(x3) +
pow2(x1) + pow2(x6) + pow2(x4) + pow2(x3) + pow2(x3) + pow2(x7) + pow2(x2) + pow2(x1) +
pow2(x1) + pow2(x2) + pow2(x3) + pow2(x1) + pow2(x1) + sin(x2) + pow2(x1)
\end{lstlisting}
Переставим слагаемые:
\begin{lstlisting}[label={lst:}]
pow2(x1) + pow2(x1) + pow2(x1) + pow2(x1) + pow2(x1) + pow2(x1) + pow2(x1) + pow2(x1) +
pow2(x2) + pow2(x2) + pow2(x2) + pow2(x2) + pow2(x2) + pow2(x2) + pow2(x2) +
pow2(x3) + pow2(x3) + pow2(x3) + pow2(x3) + pow2(x3) + pow2(x3) +
pow2(x4) + pow2(x4) + pow2(x4) + pow2(x4) + pow2(x4) +
pow2(x5 + x5) +
pow2(x6) + pow2(x6) + pow2(x6) +
pow2(x7) + pow2(x7) +
pow2(x8) +
sin(x6 + x2) + sin(x6) + sin(x2)
\end{lstlisting}
Заметим, что $(x_5 + x_5)^2 = (2x_5)^2 = 4x_5^2$, а также сгруппируем слагаемые, чтобы получить финальный вид формулы, найденной алгоритмом:
$$
\hat{f}(x) = \textcolor{green!70!black}{8x_1^2 + 7x_2^2 + 6x_3^2 + 5x_4^2 + 4x_5^2 + 3x_6^2 + 2x_7^2 + x_8^2} + \textcolor{red!90!black}{sin(x_6 + x_2) + sin(x_6) + sin(x_2)}
$$
Найденная формула полностью включает в себя целевую и содержит лишь несколько лишних слагаемых.
\newpage
\section{Ответ на контрольный вопрос}
\textbf{Вопрос}: Опишите древовидное представление.
\textbf{Ответ}:
Древовидное представление — классический подход в генетическом программировании, где программы представляются в виде синтаксических деревьев. Внутренние узлы содержат функции из функционального множества (арифметические операции, математические функции), а листья — терминалы из терминального множества (переменные и константы). Вычисление происходит рекурсивно от листьев к корню. Сложность дерева оценивается через максимальную глубину $D_m$ (расстояние от корня до самого дальнего листа) или общее количество узлов.
Основные преимущества: естественное отображение синтаксической структуры математических выражений, гибкость в работе с выражениями различной длины и сложности, простота реализации генетических операторов (кроссовер поддеревьев, узловая мутация, растущая и усекающая мутации), автоматическое соблюдение синтаксической корректности при генерации и модификации программ. Инициализация выполняется полным методом (full) или растущим методом (grow), либо их комбинацией (ramped half-and-half).
\newpage
\section*{Заключение}
\addcontentsline{toc}{section}{Заключение}
В ходе четвёртой лабораторной работы была успешно решена задача нахождения формулы целевой функции вида $f(x) = \sum_{i=1}^{n} \sum_{j=1}^{i} x_j^2$ с использованием генетического программирования:
\begin{enumerate}
\item Изучен теоретический материал о представлениях программ в генетическом программировании (древовидное, линейное, графовое) и специализированных операторах кроссинговера и мутации для древовидных структур;
\item Создана программная библиотека \texttt{gp} на языке Python с реализацией древовидного представления хромосом, кроссовера поддеревьев, четырёх типов мутаций (узловая, усекающая, растущая, Hoist-мутация), турнирной селекции и безопасных векторизованных операций;
\item Реализованы методы инициализации популяции (full, grow, ramped half-and-half), фитнес-функции на основе метрик ошибок (MSE, RMSE, MAE, NRMSE), механизм элитизма и визуализация деревьев с помощью Graphviz;
\item Проведён эксперимент с популяцией из 400 особей на 10000 тестовых точках для 8 переменных. За 200 поколений (~5.9 минут) получено решение с MSE = 0.412 и RMSE = 0.642, полностью включающее целевую функцию с небольшими дополнительными слагаемыми.
\end{enumerate}
\newpage
\section*{Список литературы}
\addcontentsline{toc}{section}{Список литературы}
\vspace{-1.5cm}
\begin{thebibliography}{0}
\bibitem{vostrov}
Методические указания по выполнению лабораторных работ к курсу «Генетические алгоритмы», 119 стр.
\end{thebibliography}
\end{document}