Refine lab6 assets and report comparison

This commit is contained in:
Artem
2025-11-21 17:00:45 +03:00
parent 7394e5b9fb
commit 9f591dadda
7 changed files with 333 additions and 107 deletions

239
lab6/aco.py Normal file
View File

@@ -0,0 +1,239 @@
import math
import random
import struct
import zlib
from dataclasses import dataclass
from typing import List, Sequence, Tuple
City = Tuple[float, float]
Tour = List[int]
def euclidean_distance(c1: City, c2: City) -> float:
return math.hypot(c1[0] - c2[0], c1[1] - c2[1])
def build_distance_matrix(cities: Sequence[City]) -> list[list[float]]:
size = len(cities)
matrix = [[0.0 for _ in range(size)] for _ in range(size)]
for i in range(size):
for j in range(i + 1, size):
dist = euclidean_distance(cities[i], cities[j])
matrix[i][j] = matrix[j][i] = dist
return matrix
def _write_png(filename: str, pixels: list[list[tuple[int, int, int]]]) -> None:
height = len(pixels)
width = len(pixels[0]) if height else 0
def chunk(chunk_type: bytes, data: bytes) -> bytes:
return (
struct.pack(">I", len(data))
+ chunk_type
+ data
+ struct.pack(">I", zlib.crc32(chunk_type + data) & 0xFFFFFFFF)
)
raw = b"".join(b"\x00" + bytes([c for px in row for c in px]) for row in pixels)
png = b"\x89PNG\r\n\x1a\n"
ihdr = struct.pack(">IIBBBBB", width, height, 8, 2, 0, 0, 0)
png += chunk(b"IHDR", ihdr)
png += chunk(b"IDAT", zlib.compress(raw, 9))
png += chunk(b"IEND", b"")
with open(filename, "wb") as f:
f.write(png)
def _scale_points(points: Sequence[tuple[float, float]], size: int = 800, margin: int = 20):
xs = [p[0] for p in points]
ys = [p[1] for p in points]
min_x, max_x = min(xs), max(xs)
min_y, max_y = min(ys), max(ys)
scale_x = (size - 2 * margin) / (max_x - min_x + 1e-9)
scale_y = (size - 2 * margin) / (max_y - min_y + 1e-9)
return [
(
int((x - min_x) * scale_x + margin),
int((y - min_y) * scale_y + margin),
)
for x, y in points
]
def _draw_line(pixels: list[list[tuple[int, int, int]]], p1: tuple[int, int], p2: tuple[int, int], color: tuple[int, int, int]):
x1, y1 = p1
x2, y2 = p2
dx = abs(x2 - x1)
dy = -abs(y2 - y1)
sx = 1 if x1 < x2 else -1
sy = 1 if y1 < y2 else -1
err = dx + dy
while True:
if 0 <= x1 < len(pixels[0]) and 0 <= y1 < len(pixels):
pixels[y1][x1] = color
if x1 == x2 and y1 == y2:
break
e2 = 2 * err
if e2 >= dy:
err += dy
x1 += sx
if e2 <= dx:
err += dx
y1 += sy
def _draw_circle(pixels: list[list[tuple[int, int, int]]], center: tuple[int, int], radius: int, color: tuple[int, int, int]):
cx, cy = center
for y in range(cy - radius, cy + radius + 1):
for x in range(cx - radius, cx + radius + 1):
if 0 <= x < len(pixels[0]) and 0 <= y < len(pixels):
if (x - cx) ** 2 + (y - cy) ** 2 <= radius ** 2:
pixels[y][x] = color
def plot_tour(cities: Sequence[City], tour: Sequence[int], save_path: str) -> None:
ordered = [cities[i] for i in tour] + [cities[tour[0]]]
points = _scale_points(ordered)
width = height = 820
pixels = [[(255, 255, 255) for _ in range(width)] for _ in range(height)]
for i in range(len(points) - 1):
_draw_line(pixels, points[i], points[i + 1], (0, 120, 200))
# draw cities
city_points = _scale_points(cities)
for p in city_points:
_draw_circle(pixels, p, 4, (200, 50, 50))
_write_png(save_path, pixels)
def plot_history(best_lengths: Sequence[float], save_path: str) -> None:
if not best_lengths:
return
width, height, margin = 820, 400, 20
pixels = [[(255, 255, 255) for _ in range(width)] for _ in range(height)]
n = len(best_lengths)
min_len, max_len = min(best_lengths), max(best_lengths)
span = max_len - min_len if max_len != min_len else 1
def to_point(idx: int, value: float) -> tuple[int, int]:
x = margin + int((width - 2 * margin) * idx / max(1, n - 1))
y = height - margin - int((height - 2 * margin) * (value - min_len) / span)
return x, y
prev = to_point(0, best_lengths[0])
for i, v in enumerate(best_lengths[1:], start=1):
cur = to_point(i, v)
_draw_line(pixels, prev, cur, (30, 30, 30))
prev = cur
_write_png(save_path, pixels)
@dataclass
class ACOConfig:
cities: Sequence[City]
n_ants: int
n_iterations: int
alpha: float = 1.0
beta: float = 5.0
rho: float = 0.5
q: float = 1.0
seed: int | None = None
@dataclass
class ACOResult:
best_tour: Tour
best_length: float
history: List[float]
class AntColonyOptimizer:
def __init__(self, config: ACOConfig):
self.config = config
if config.seed is not None:
random.seed(config.seed)
self.cities = config.cities
self.dist_matrix = build_distance_matrix(config.cities)
n = len(config.cities)
self.pheromone = [[1.0 if i != j else 0.0 for j in range(n)] for i in range(n)]
def _choose_next_city(self, current: int, unvisited: set[int]) -> int:
candidates = list(unvisited)
weights = []
for nxt in candidates:
tau = self.pheromone[current][nxt] ** self.config.alpha
eta = (1.0 / (self.dist_matrix[current][nxt] + 1e-12)) ** self.config.beta
weights.append(tau * eta)
total = sum(weights)
probs = [w / total for w in weights]
return random.choices(candidates, weights=probs, k=1)[0]
def _build_tour(self, start: int) -> Tour:
n = len(self.cities)
tour = [start]
unvisited = set(range(n))
unvisited.remove(start)
current = start
while unvisited:
nxt = self._choose_next_city(current, unvisited)
tour.append(nxt)
unvisited.remove(nxt)
current = nxt
return tour
def _tour_length(self, tour: Sequence[int]) -> float:
return sum(
self.dist_matrix[tour[i]][tour[(i + 1) % len(tour)]]
for i in range(len(tour))
)
def run(self) -> ACOResult:
best_tour: Tour = []
best_length = float("inf")
best_history: list[float] = []
for _ in range(self.config.n_iterations):
tours: list[Tour] = []
lengths: list[float] = []
for _ in range(self.config.n_ants):
start_city = random.randrange(len(self.cities))
tour = self._build_tour(start_city)
length = self._tour_length(tour)
tours.append(tour)
lengths.append(length)
if length < best_length:
best_length = length
best_tour = tour
for i in range(len(self.pheromone)):
for j in range(len(self.pheromone)):
self.pheromone[i][j] *= 1 - self.config.rho
for tour, length in zip(tours, lengths):
deposit = self.config.q / length
for i in range(len(tour)):
a, b = tour[i], tour[(i + 1) % len(tour)]
self.pheromone[a][b] += deposit
self.pheromone[b][a] += deposit
best_history.append(best_length)
return ACOResult(best_tour=best_tour, best_length=best_length, history=best_history)
def run_aco(config: ACOConfig) -> ACOResult:
optimizer = AntColonyOptimizer(config)
return optimizer.run()