fitnesses

This commit is contained in:
2025-11-06 22:50:10 +03:00
parent e6765c9254
commit cc180dc700
12 changed files with 959 additions and 65 deletions

View File

@@ -1,36 +1,185 @@
import random
from math import log
import numpy as np
from numpy.typing import NDArray
from gp import Chromosome, ops
from gp.population import ramped_initialization
from gp.primitive import Var
operations = ops.ALL
terminals = [Var(f"x{i}") for i in range(1, 9)]
chrom = Chromosome.full_init(terminals, operations, max_depth=3)
print("Depth:", chrom.root.get_subtree_depth())
print("Formula:", chrom)
print("Tree:\n", chrom.root.to_str_tree())
values = [
np.array([1.0]),
np.array([2.0]),
np.array([3.0]),
np.array([4.0]),
np.array([5.0]),
np.array([6.0]),
np.array([7.0]),
np.array([8.0]),
]
context = {var: value for var, value in zip(terminals, values)}
print("Value for ", values, ":", chrom.root.eval(context))
population = ramped_initialization(
5,
[3, 4, 5, 6, 7, 8],
terminals,
operations,
from gp import Chromosome
from gp.crossovers import crossover_subtree
from gp.fitness import (
HuberFitness,
MAEFitness,
MSEFitness,
NRMSEFitness,
PenalizedFitness,
RMSEFitness,
)
print("Population size:", len(population))
print("Population:")
[print(str(chrom)) for chrom in population]
from gp.ga import GARunConfig, genetic_algorithm
from gp.mutations import grow_mutation, shrink_mutation
from gp.ops import ADD, COS, DIV, EXP, MUL, NEG, POW, SIN, SQUARE, SUB
from gp.population import ramped_initialization
from gp.primitive import Const, Var
from gp.selection import roulette_selection
NUM_VARS = 9
TEST_POINTS = 10000
MAX_DEPTH = 13
MAX_GENERATIONS = 500
np.random.seed(17)
random.seed(17)
X = np.random.uniform(-5.536, 5.536, size=(TEST_POINTS, NUM_VARS))
# axes = [np.linspace(-5.536, 5.536, TEST_POINTS) for _ in range(NUM_VARS)]
# X = np.array(np.meshgrid(*axes)).T.reshape(-1, NUM_VARS)
operations = [SQUARE, SIN, COS, EXP, ADD, SUB, MUL, DIV, POW]
# operations = [SQUARE, ADD, SUB, MUL]
terminals = [Var(f"x{i}") for i in range(1, NUM_VARS + 1)]
# def target_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
# """
# f(x) = x1 + x2 + sin(x1)
# x имеет форму (n_samples, n_vars)
# """
# x1 = x[:, 0]
# x2 = x[:, 1]
# return x1 + x2 + np.sin(x1) + np.sin(x2) + np.exp(-x1) + np.cos(x2)
# def target_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
# """
# Простая тестовая функция: сумма косинусов всех переменных.
# f(x) = sum_i cos(x_i)
# x имеет форму (n_samples, n_vars)
# """
# return np.sum(x, axis=1)
def target_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
"""
Векторизованная версия функции:
f(x) = sum_{i=1}^n sum_{j=1}^i x_j^2
x имеет форму (n_samples, n_vars)
"""
# Префиксные суммы квадратов по оси переменных
x_sq = x**2
prefix_sums = np.cumsum(x_sq, axis=1)
# Суммируем по i (ось 1)
return np.sum(prefix_sums, axis=1)
# def target_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
# """
# Rastrigin function.
# f(x) = 10 * n + sum(x_i^2 - 10 * cos(2πx_i))
# x: shape (n_samples, n_vars)
# """
# n = x.shape[1]
# return 10 * n + np.sum(x**2 - 10 * np.cos(2 * np.pi * x), axis=1)
# fitness_function = MSEFitness(target_function, lambda: X)
# fitness = HuberFitness(target_function, lambda: X, delta=1.0)
# fitness_function = PenalizedFitness(
# target_function, lambda: X, base_fitness=fitness, lambda_=0.003
# )
fitness_function = HuberFitness(target_function, lambda: X)
# fitness_function = PenalizedFitness(
# target_function, lambda: X, base_fitness=fitness, lambda_=0.003
# )
def adaptive_mutation(
chromosome: Chromosome,
generation: int,
max_generations: int,
max_depth: int,
) -> Chromosome:
"""Адаптивная мутация.
Меняет вероятность типов мутации по ходу эволюции:
- Ранняя фаза (<30%): 70% grow, 30% shrink
- Средняя фаза (3070%): 40% grow, 60% shrink
- Поздняя фаза (>=70%): 20% grow, 80% shrink
"""
r = random.random()
# 50% grow, 50% shrink
if r < 0.5:
return grow_mutation(chromosome, max_depth=max_depth)
return shrink_mutation(chromosome)
# def adaptive_mutation(
# chromosome: Chromosome,
# generation: int,
# max_generations: int,
# max_depth: int,
# ) -> Chromosome:
# """Адаптивная мутация.
# Меняет вероятность типов мутации по ходу эволюции:
# - Ранняя фаза (<30%): 70% grow, 30% shrink
# - Средняя фаза (3070%): 40% grow, 60% shrink
# - Поздняя фаза (>=70%): 20% grow, 80% shrink
# """
# # Вычисляем прогресс в диапазоне [0, 1]
# if max_generations <= 0:
# progress = 0.0
# else:
# progress = min(1.0, max(0.0, generation / max_generations))
# r = random.random()
# # Определяем тип мутации
# if progress < 0.3:
# do_grow = r < 0.7
# elif progress < 0.7:
# do_grow = r < 0.4
# else:
# do_grow = r < 0.2
# # Выполняем выбранную мутацию
# if do_grow:
# return grow_mutation(chromosome, max_depth=max_depth)
# return shrink_mutation(chromosome)
config = GARunConfig(
fitness_func=fitness_function,
crossover_fn=lambda p1, p2: crossover_subtree(p1, p2, max_depth=8),
mutation_fn=lambda chrom, gen_num: adaptive_mutation(
chrom, gen_num, MAX_GENERATIONS, MAX_DEPTH
),
selection_fn=roulette_selection,
init_population=ramped_initialization(
15, [4, 5, 6, 6, 7, 7, 8, 9, 10, 11], terminals, operations
),
seed=17,
pc=0.9,
pm=0.3,
elitism=30,
max_generations=MAX_GENERATIONS,
log_every_generation=True,
)
result = genetic_algorithm(config)
# Выводим результаты
print(f"Лучшая особь: {result.best_generation.best}")
print(result.best_generation.best.root.to_str_tree())
print(f"Лучшее значение фитнеса: {result.best_generation.best_fitness:.6f}")
print(f"Количество поколений: {result.generations_count}")
print(f"Время выполнения: {result.time_ms:.2f} мс")
mse_fitness = MSEFitness(target_function, lambda: X)
print(f"MSE: {mse_fitness(result.best_generation.best):.6f}")
rmse_fitness = RMSEFitness(target_function, lambda: X)
print(f"RMSE: {rmse_fitness(result.best_generation.best):.6f}")
mae_fitness = MAEFitness(target_function, lambda: X)
print(f"MAE: {mae_fitness(result.best_generation.best):.6f}")
huber_fitness = HuberFitness(target_function, lambda: X, delta=1.0)
print(f"Huber: {huber_fitness(result.best_generation.best):.6f}")
nrmse_fitness = NRMSEFitness(target_function, lambda: X)
print(f"NRMSE: {nrmse_fitness(result.best_generation.best):.6f}")