import random from math import log import numpy as np from numpy.typing import NDArray from gp import Chromosome from gp.crossovers import crossover_subtree from gp.fitness import ( MAEFitness, MSEFitness, NRMSEFitness, PenalizedFitness, RMSEFitness, ) from gp.ga import GARunConfig, genetic_algorithm from gp.mutations import ( grow_mutation, hoist_mutation, node_replacement_mutation, shrink_mutation, ) from gp.ops import ADD, COS, DIV, EXP, MUL, NEG, POW, SIN, SQUARE, SUB from gp.population import ramped_initialization from gp.primitive import Const, Var from gp.selection import roulette_selection, tournament_selection NUM_VARS = 8 TEST_POINTS = 10000 MAX_DEPTH = 10 MAX_GENERATIONS = 200 SEED = 17 np.random.seed(SEED) random.seed(SEED) X = np.random.uniform(-5.536, 5.536, size=(TEST_POINTS, NUM_VARS)) # axes = [np.linspace(-5.536, 5.536, TEST_POINTS) for _ in range(NUM_VARS)] # X = np.array(np.meshgrid(*axes)).T.reshape(-1, NUM_VARS) operations = [SQUARE, SIN, COS, EXP, ADD, SUB, MUL, DIV, POW] # operations = [SQUARE, ADD, SUB, MUL] terminals = [Var(f"x{i}") for i in range(1, NUM_VARS + 1)] def target_function(x: NDArray[np.float64]) -> NDArray[np.float64]: """ Векторизованная версия функции: f(x) = sum_{i=1}^n sum_{j=1}^i x_j^2 x имеет форму (n_samples, n_vars) """ # Префиксные суммы квадратов по оси переменных x_sq = x**2 prefix_sums = np.cumsum(x_sq, axis=1) # Суммируем по i (ось 1) return np.sum(prefix_sums, axis=1) # fitness_function = MSEFitness(target_function, lambda: X) # fitness_function = HuberFitness(target_function, lambda: X, delta=0.5) # fitness_function = PenalizedFitness( # target_function, lambda: X, base_fitness=fitness, lambda_=0.1 # ) # fitness_function = NRMSEFitness(target_function, lambda: X) fitness_function = RMSEFitness(target_function, lambda: X) # fitness_function = PenalizedFitness( # target_function, lambda: X, base_fitness=fitness_function, lambda_=0.0001 # ) def adaptive_mutation( chromosome: Chromosome, generation: int, max_generations: int, max_depth: int, ) -> Chromosome: r = random.random() if r < 0.4: return grow_mutation(chromosome, max_depth=max_depth) elif r < 0.7: return node_replacement_mutation(chromosome) elif r < 0.85: return hoist_mutation(chromosome) return shrink_mutation(chromosome) init_population = ramped_initialization( 20, [i for i in range(MAX_DEPTH - 9, MAX_DEPTH + 1)], terminals, operations ) print("Population size:", len(init_population)) config = GARunConfig( fitness_func=fitness_function, crossover_fn=lambda p1, p2: crossover_subtree(p1, p2, max_depth=MAX_DEPTH), mutation_fn=lambda chrom, gen_num: adaptive_mutation( chrom, gen_num, MAX_GENERATIONS, MAX_DEPTH ), # selection_fn=roulette_selection, selection_fn=lambda p, f: tournament_selection(p, f, k=3), init_population=init_population, seed=SEED, pc=0.85, pm=0.15, elitism=15, max_generations=MAX_GENERATIONS, log_every_generation=True, ) result = genetic_algorithm(config) # Выводим результаты print(f"Лучшая особь: {result.best_generation.best}") print(result.best_generation.best.root.to_str_tree()) print(f"Лучшее значение фитнеса: {result.best_generation.best_fitness:.6f}") print(f"Количество поколений: {result.generations_count}") print(f"Время выполнения: {result.time_ms:.2f} мс") print("Population size:", len(init_population)) mse_fitness = MSEFitness(target_function, lambda: X) print(f"MSE: {mse_fitness(result.best_generation.best):.6f}") rmse_fitness = RMSEFitness(target_function, lambda: X) print(f"RMSE: {rmse_fitness(result.best_generation.best):.6f}") mae_fitness = MAEFitness(target_function, lambda: X) print(f"MAE: {mae_fitness(result.best_generation.best):.6f}") nrmse_fitness = NRMSEFitness(target_function, lambda: X) print(f"NRMSE: {nrmse_fitness(result.best_generation.best):.6f}")