Files
genetic-algorithms/lab6/report/report.tex
2025-12-03 18:16:28 +03:00

456 lines
29 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[a4paper, final]{article}
%\usepackage{literat} % Нормальные шрифты
\usepackage[14pt]{extsizes} % для того чтобы задать нестандартный 14-ый размер шрифта
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage[T2A]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[russian]{babel}
\usepackage{amsmath}
\usepackage[left=25mm, top=20mm, right=20mm, bottom=20mm, footskip=10mm]{geometry}
\usepackage{ragged2e} %для растягивания по ширине
\usepackage{setspace} %для межстрочно го интервала
\usepackage{moreverb} %для работы с листингами
\usepackage{indentfirst} % для абзацного отступа
\usepackage{moreverb} %для печати в листинге исходного кода программ
\usepackage{pdfpages} %для вставки других pdf файлов
\usepackage{tikz}
\usepackage{graphicx}
\usepackage{afterpage}
\usepackage{longtable}
\usepackage{float}
\usepackage{xcolor}
% \usepackage[paper=A4,DIV=12]{typearea}
\usepackage{pdflscape}
% \usepackage{lscape}
\usepackage{array}
\usepackage{multirow}
\renewcommand\verbatimtabsize{4\relax}
\renewcommand\listingoffset{0.2em} %отступ от номеров строк в листинге
\renewcommand{\arraystretch}{1.4} % изменяю высоту строки в таблице
\usepackage[font=small, singlelinecheck=false, justification=centering, format=plain, labelsep=period]{caption} %для настройки заголовка таблицы
\usepackage{listings} %листинги
\usepackage{xcolor} % цвета
\usepackage{hyperref}% для гиперссылок
\usepackage{enumitem} %для перечислений
\newcommand{\specialcell}[2][l]{\begin{tabular}[#1]{@{}l@{}}#2\end{tabular}}
\setlist[enumerate,itemize]{leftmargin=1.2cm} %отступ в перечислениях
\hypersetup{colorlinks,
allcolors=[RGB]{010 090 200}} %красивые гиперссылки (не красные)
% подгружаемые языки — подробнее в документации listings (это всё для листингов)
\lstloadlanguages{ SQL}
% включаем кириллицу и добавляем кое−какие опции
\lstset{tabsize=2,
breaklines,
basicstyle=\footnotesize,
columns=fullflexible,
flexiblecolumns,
numbers=left,
numberstyle={\footnotesize},
keywordstyle=\color{blue},
inputencoding=cp1251,
extendedchars=true
}
\lstdefinelanguage{MyC}{
language=SQL,
% ndkeywordstyle=\color{darkgray}\bfseries,
% identifierstyle=\color{black},
% morecomment=[n]{/**}{*/},
% commentstyle=\color{blue}\ttfamily,
% stringstyle=\color{red}\ttfamily,
% morestring=[b]",
% showstringspaces=false,
% morecomment=[l][\color{gray}]{//},
keepspaces=true,
escapechar=\%,
texcl=true
}
\textheight=24cm % высота текста
\textwidth=16cm % ширина текста
\oddsidemargin=0pt % отступ от левого края
\topmargin=-1.5cm % отступ от верхнего края
\parindent=24pt % абзацный отступ
\parskip=5pt % интервал между абзацами
\tolerance=2000 % терпимость к "жидким" строкам
\flushbottom % выравнивание высоты страниц
% Настройка листингов
\lstset{
language=python,
extendedchars=\true,
inputencoding=utf8,
keepspaces=true,
% captionpos=b, % подписи листингов снизу
}
\begin{document} % начало документа
% НАЧАЛО ТИТУЛЬНОГО ЛИСТА
\begin{center}
\hfill \break
\hfill \break
\normalsize{МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ\\
федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»\\[10pt]}
\normalsize{Институт компьютерных наук и кибербезопасности}\\[10pt]
\normalsize{Высшая школа технологий искусственного интеллекта}\\[10pt]
\normalsize{Направление: 02.03.01 <<Математика и компьютерные науки>>}\\
\hfill \break
\hfill \break
\hfill \break
\hfill \break
\large{Лабораторная работа №6}\\
\large{по дисциплине}\\
\large{<<Генетические алгоритмы>>}\\
\large{Вариант 18}\\
% \hfill \break
\hfill \break
\end{center}
\small{
\begin{tabular}{lrrl}
\!\!\!Студент, & \hspace{2cm} & & \\
\!\!\!группы 5130201/20101 & \hspace{2cm} & \underline{\hspace{3cm}} &Тищенко А. А. \\\\
\!\!\!Преподаватель & \hspace{2cm} & \underline{\hspace{3cm}} & Большаков А. А. \\\\
&&\hspace{4cm}
\end{tabular}
\begin{flushright}
<<\underline{\hspace{1cm}}>>\underline{\hspace{2.5cm}} 2025г.
\end{flushright}
}
\hfill \break
% \hfill \break
\begin{center} \small{Санкт-Петербург, 2025} \end{center}
\thispagestyle{empty} % выключаем отображение номера для этой страницы
% КОНЕЦ ТИТУЛЬНОГО ЛИСТА
\newpage
\tableofcontents
\newpage
\section {Постановка задачи}
В данной работе были поставлены следующие задачи:
\begin{itemize}
\item Реализовать с использованием муравьиных алгоритмов решение задачи коммивояжера по индивидуальному заданию согласно номеру варианта.
\item Представить графически найденное решение
\item Сравнить найденное решение с представленным в условии задачи оптимальным решением и результатами, полученными в лабораторной работе №3.
\end{itemize}
\textbf{Индивидуальное задание вариант 18:}
\textbf{Дано:} Эвклидовы координаты городов 38 городов в Джибути (см.~Приложение~А). Оптимальный тур представлен на Рис.~\ref{fig:optimal_tour}, его длина равна 6659.
\begin{figure}[h!]
\centering
\includegraphics[width=0.5\linewidth]{img/optimal_tour.png}
\caption{Оптимальный тур для заданного набора данных}
\label{fig:optimal_tour}
\end{figure}
\newpage
\section{Теоретические сведения}
\subsection{Общие сведения о муравьиных алгоритмах}
Муравьиные алгоритмы (МА) относятся к метаэвристическим методам оптимизации и предназначены преимущественно для решения задач комбинаторной оптимизации, в частности задачи поиска оптимальных путей на графах. Основная идея таких алгоритмов основана на моделировании коллективного поведения реальных муравьёв, использующих феромонные следы для обмена информацией.
Каждый агент, называемый \textit{искусственным муравьём}, поэтапно строит решение задачи, перемещаясь по графу и выбирая следующую вершину на основе вероятностного правила, учитывающего концентрацию феромона на дугах графа. Феромон отражает привлекательность соответствующих маршрутов: чем выше его концентрация на дуге, тем вероятнее выбор этой дуги муравьём.
\subsection{Простой муравьиный алгоритм (SACO)}
Для иллюстрации рассмотрим простой муравьиный алгоритм SACO (Simple Ant Colony Optimization). Пусть задан граф
\[
G = (V, E),
\]
где $V$ — множество вершин, $E$ — множество рёбер. Каждой дуге $(i,j)$ сопоставлена величина феромона $\tau_{ij}$.
В начальный момент концентрация феромона обычно принимается нулевой, однако для предотвращения зацикливания каждому ребру присваивается малое случайное начальное значение $\tau_{ij}^{(0)}$.
Каждый муравей $k=1,\ldots,n_k$ помещается в стартовую вершину и начинает построение пути. Если муравей находится в вершине $i$, он выбирает следующую вершину $j \in N_i^k$ на основе вероятностного правила
\[
p_{ij}^k(t) = \frac{\tau_{ij}^\alpha(t)}{\sum\limits_{l \in N_i^k} \tau_{il}^\alpha(t)},
\]
где $\alpha$ — параметр, определяющий степень влияния феромона.
При отсутствии допустимых переходов допускается возврат в предыдущую вершину, что приводит к появлению петель, которые впоследствии удаляются.
После завершения построения полного пути $x_k(t)$ выполняется его оценка. Длина пути обозначается как $L_k(t)$ и равна числу пройденных дуг.
\subsection{Обновление феромона}
Каждый муравей откладывает феромон на рёбрах своего пути согласно правилу
\[
\Delta \tau_{ij}^k(t) =
\begin{cases}
\frac{1}{L_k(t)}, &\text{если дуга } (i,j) \in x_k(t), \\
0, &\text{иначе}.
\end{cases}
\]
Общее обновление феромона на дуге $(i,j)$:
\[
\tau_{ij}(t+1) = \tau_{ij}(t) + \sum_{k=1}^{n_k} \Delta\tau_{ij}^k(t).
\]
Чем короче путь, тем больше феромона откладывается на его рёбрах, что повышает вероятность выбора коротких маршрутов в последующих итерациях.
\subsection{Испарение феромона}
Чтобы предотвратить преждевременную сходимость алгоритма к локальным минимумам, применяется механизм \textit{искусственного испарения феромона}. На каждом шаге выполняется:
\[
\tau_{ij}(t) = (1 - \rho)\,\tau_{ij}(t),
\]
где $\rho \in [0,1]$ — коэффициент испарения. Большие значения $\rho$ усиливают случайность поиска, малые — повышают устойчивость к изменениям.
\subsection{Критерии остановки алгоритма}
Муравьиные алгоритмы могут завершаться при выполнении одного из условий:
\begin{itemize}
\item достигнуто максимальное число итераций;
\item найдено решение приемлемого качества $f(x_k(t)) \leq \varepsilon$;
\item все муравьи начинают строить одинаковые маршруты, что говорит о стабилизации процесса.
\end{itemize}
\subsection{Описание общего алгоритма}
Алгоритм SACO можно представить в следующем виде:
\begin{enumerate}
\item Инициализация феромона малыми случайными значениями $\tau_{ij}^{(0)}$.
\item Размещение всех муравьёв в начальной вершине.
\item Для каждой итерации:
\begin{enumerate}
\item Каждый муравей строит путь согласно вероятностному правилу выбора вершины.
\item Выполняется удаление петель.
\item Вычисляется длина пути $L_k(t)$.
\end{enumerate}
\item Выполняется испарение феромона.
\item Каждый муравей откладывает феромон на рёбрах своего пути.
\item Итерация продолжается до выполнения критерия остановки.
\end{enumerate}
Муравьиные алгоритмы позволяют эффективно находить приближённые решения задач комбинаторной оптимизации, таких как задача коммивояжёра, что и является целью данной лабораторной работы.
\newpage
\section{Особенности реализации}
Код решения собран в модуле \texttt{lab6/aco.py}. Реализация использует объектно-ориентированный подход с явной типизацией через современные аннотации типов Python (PEP 604). Ниже приведены ключевые элементы реализации с сигнатурами функций и пояснениями.
\subsection{Структуры данных конфигурации и результата}
Конфигурация алгоритма оформлена через \texttt{@dataclass} и включает все параметры, влияющие на поведение ACO:
\begin{lstlisting}[language=Python]
@dataclass
class ACOConfig:
cities: Sequence[City] # список координат городов
n_ants: int # число муравьев
n_iterations: int # число итераций
alpha: float = 1.0 # влияние феромона
beta: float = 5.0 # влияние эвристики (1/расстояние)
rho: float = 0.5 # коэффициент испарения
q: float = 1.0 # константа для отложения феромона
seed: int | None = None # зерно ГСЧ (воспроизводимость)
\end{lstlisting}
Результат работы алгоритма представлен структурой:
\begin{lstlisting}[language=Python]
@dataclass
class ACOResult:
best_tour: Tour # индексы городов в порядке обхода
best_length: float # длина лучшего маршрута
history: List[float] # история длин по итерациям
\end{lstlisting}
\subsection{Класс AntColonyOptimizer и инициализация}
Основная логика инкапсулирована в классе \texttt{AntColonyOptimizer}, который принимает конфигурацию при создании:
\begin{lstlisting}[language=Python]
class AntColonyOptimizer:
def __init__(self, config: ACOConfig)
\end{lstlisting}
В конструкторе выполняются следующие действия:
\begin{itemize}
\item инициализация генератора случайных чисел через \texttt{random.seed(config.seed)} для обеспечения воспроизводимости экспериментов;
\item вычисление матрицы расстояний между всеми городами с помощью \texttt{build\_distance\_matrix};
\item создание матрицы феромона размером $n \times n$, где все недиагональные элементы инициализируются единицами, а диагональные — нулями (для предотвращения самопереходов).
\end{itemize}
\subsection{Построение тура муравьём}
Каждый муравей строит полный гамильтонов цикл, начиная со случайно выбранного стартового города. Ключевой метод выбора следующего города:
\begin{lstlisting}[language=Python]
def _choose_next_city(self, current: int,
unvisited: set[int]) -> int
\end{lstlisting}
Метод реализует вероятностный выбор на основе формулы:
\[
p_{ij} = \frac{[\tau_{ij}]^\alpha \cdot [\eta_{ij}]^\beta}{\sum_{k \in \text{unvisited}} [\tau_{ik}]^\alpha \cdot [\eta_{ik}]^\beta}
\]
где $\tau_{ij}$ — уровень феромона на ребре $(i,j)$, а $\eta_{ij} = 1/d_{ij}$ — эвристическая привлекательность (обратная величина расстояния). К расстоянию добавляется малая константа $10^{-12}$ для численной стабильности при делении. Финальный выбор осуществляется через \texttt{random.choices} с вычисленными вероятностями.
Построение полного тура выполняет метод:
\begin{lstlisting}[language=Python]
def _build_tour(self, start: int) -> Tour
\end{lstlisting}
Начиная со стартового города, муравей последовательно выбирает следующие непосещённые города до тех пор, пока множество \texttt{unvisited} не станет пустым.
Вычисление длины построенного тура:
\begin{lstlisting}[language=Python]
def _tour_length(self, tour: Sequence[int]) -> float
\end{lstlisting}
Метод суммирует расстояния между последовательными городами в туре, включая замыкающее ребро от последнего города к первому, используя предвычисленную матрицу расстояний.
\subsection{Основной цикл алгоритма}
Главный метод запуска оптимизации:
\begin{lstlisting}[language=Python]
def run(self) -> ACOResult
\end{lstlisting}
На каждой из \texttt{n\_iterations} итераций выполняются следующие шаги:
\begin{enumerate}
\item \textbf{Построение туров}: каждый из \texttt{n\_ants} муравьёв создаёт свой маршрут, начиная со случайного города. Вычисляется длина каждого маршрута, и глобально лучший тур обновляется при обнаружении более короткого.
\item \textbf{Испарение феромона}: все элементы матрицы феромона умножаются на $(1 - \rho)$, моделируя естественное испарение. Это предотвращает неограниченный рост концентрации феромона и позволяет алгоритму «забывать» плохие решения.
\item \textbf{Отложение феромона}: для каждого муравья вычисляется вклад $\Delta\tau = q/L$, где $L$ — длина его маршрута. Этот вклад добавляется симметрично на оба направления каждого ребра в туре. Таким образом, короткие маршруты откладывают больше феромона.
\item \textbf{Запись истории}: лучшая на данный момент длина добавляется в список \texttt{history} для последующего анализа сходимости.
\end{enumerate}
По завершении всех итераций метод возвращает \texttt{ACOResult} с лучшим найденным туром, его длиной и историей оптимизации.
\subsection{Точка входа}
Для удобства использования предоставлена функция верхнего уровня:
\begin{lstlisting}[language=Python]
def run_aco(config: ACOConfig) -> ACOResult
\end{lstlisting}
Она создаёт экземпляр оптимизатора и запускает алгоритм, возвращая результат.
\subsection{Визуализация}
Модуль включает две функции для визуализации результатов средствами \texttt{matplotlib}:
Функция построения графика маршрута:
\begin{lstlisting}[language=Python]
def plot_tour(cities: Sequence[City], tour: Sequence[int],
save_path: str) -> None
\end{lstlisting}
Отображает города в виде точек и соединяет их ломаной линией в порядке обхода, включая возврат к начальной точке. Используется соотношение сторон \texttt{aspect="equal"} для сохранения геометрии, сетка для лучшей читаемости координат. Результат сохраняется в PNG с разрешением 220 DPI.
Функция построения графика сходимости:
\begin{lstlisting}[language=Python]
def plot_history(best_lengths: Sequence[float],
save_path: str) -> None
\end{lstlisting}
Строит линейный график изменения длины лучшего найденного тура по итерациям. Позволяет визуально оценить скорость сходимости и стабильность алгоритма.
\newpage
\section{Результаты работы}
Алгоритм был запущен со следующими параметрами: 50 муравьёв, 50 итераций, $\alpha = 1{,}2$, $\beta = 5$, $\rho = 0{,}5$, $q = 1$. Лучший найденный тур имеет длину $6662{,}35$, что на $0{,}05\%$ отличается от оптимального значения 6659.
\begin{figure}[h!]
\centering
\begin{minipage}{0.48\linewidth}
\centering
\includegraphics[width=0.95\linewidth]{img/optimal_tour.png}
\caption{Оптимальный маршрут длиной 6659}
\label{fig:optimal_result}
\end{minipage}\hfill
\begin{minipage}{0.48\linewidth}
\centering
\includegraphics[width=0.95\linewidth]{img/aco_best_tour.png}
\caption{Лучший маршрут, найденный муравьиным алгоритмом (6662{,}35)}
\label{fig:aco_tour}
\end{minipage}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.9\linewidth]{img/aco_history.png}
\caption{Сходимость длины лучшего тура по итерациям}
\label{fig:aco_history}
\end{figure}
\subsection{Сравнение с результатами лабораторной работы~№3}
Для лабораторной работы №3 с генетическим алгоритмом лучший результат составил \textbf{6667{,}03} при популяции $N=500$, вероятностях $P_c=0{,}9$ и $P_m=0{,}5$. Муравьиный алгоритм показал более точное решение: длина тура \textbf{6662{,}35} против оптимального 6659. Разница с оптимумом составила 3{,}35 единицы (0{,}05\%), тогда как в лабораторной работе №3 отклонение было 8{,}03 (0{,}12\%).
\begin{figure}[h!]
\centering
\begin{minipage}{0.48\linewidth}
\centering
\includegraphics[width=0.95\linewidth]{img/best_lab3.png}
\caption{Лучший маршрут из лабораторной работы №3 (ГА): длина 6667{,}03}
\label{fig:lab3_best}
\end{minipage}\hfill
\begin{minipage}{0.48\linewidth}
\centering
\includegraphics[width=0.95\linewidth]{img/aco_best_tour.png}
\caption{Лучший маршрут лабораторной работы №6 (МА): длина 6662{,}35}
\label{fig:lab6_best}
\end{minipage}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.43\linewidth]{img/optimal_tour.png}
\caption{Оптимальный маршрут длиной 6659}
\label{fig:optimal_comparison}
\end{figure}
\newpage
\section{Ответ на контрольный вопрос}
\textbf{Вопрос}: Какие критерии окончания могут быть использованы в простом МА?
\textbf{Ответ}: В простом муравьином алгоритме могут использоваться следующие критерии завершения работы:
\begin{itemize}
\item окончание при превышении заданного числа итераций;
\item окончание по достижению приемлемого решения;
\item окончание в случае, когда все муравьи начинают следовать одним и тем же путём.
\end{itemize}
\newpage
\section*{Заключение}
\addcontentsline{toc}{section}{Заключение}
В ходе шестой лабораторной работы выполнена реализация простого муравьиного алгоритма для задачи коммивояжёра:
\begin{enumerate}
\item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и визуализацией результатов с помощью \texttt{matplotlib}.
\item Проведён численный эксперимент на данных из варианта 18 (38 городов Джибути); подобраны параметры $\alpha=1{,}2$, $\beta=5$, $\rho=0{,}5$, 50 муравьёв, 400 итераций.
\item Получено приближённое решение длиной 6662{,}35, что всего на 0{,}05\% хуже известного оптимума 6659 и лучше результата, достигнутого генетическим алгоритмом из лабораторной работы №3.
\end{enumerate}
\newpage
\section*{Список литературы}
\addcontentsline{toc}{section}{Список литературы}
\vspace{-1.5cm}
\begin{thebibliography}{0}
\bibitem{vostrov}
Методические указания по выполнению лабораторных работ к курсу «Генетические алгоритмы», 119 стр.
\end{thebibliography}
\end{document}