This commit is contained in:
2026-01-07 15:08:09 +03:00
parent 61cc472669
commit 850791b25d
7 changed files with 1669 additions and 0 deletions

View File

@@ -0,0 +1,441 @@
"""Gradient descent implementations."""
from dataclasses import dataclass, field
from typing import List, Literal, Optional
import numpy as np
from .functions import Function1D, Function2D
from .line_search import golden_section_search, armijo_step, armijo_step_1d
StepMethod = Literal["constant", "golden_section", "armijo"]
@dataclass
class IterationInfo1D:
"""Information about a single iteration of 1D gradient descent."""
iteration: int
x: float
f_x: float
grad: float
step_size: float
@dataclass
class GradientDescentResult1D:
"""Result of 1D gradient descent."""
x_star: float
f_star: float
iterations: List[IterationInfo1D]
converged: bool
method: str
@property
def trajectory(self) -> List[float]:
return [it.x for it in self.iterations]
@dataclass
class IterationInfo2D:
"""Information about a single iteration of 2D gradient descent."""
iteration: int
x: np.ndarray
f_x: float
grad: np.ndarray
step_size: float
@dataclass
class GradientDescentResult2D:
"""Result of 2D gradient descent."""
x_star: np.ndarray
f_star: float
iterations: List[IterationInfo2D]
converged: bool
method: str
@property
def trajectory(self) -> List[np.ndarray]:
return [it.x for it in self.iterations]
def gradient_descent_1d(
func: Function1D,
x0: float,
step_method: StepMethod = "constant",
step_size: float = 0.1,
eps_x: float = 0.05,
eps_f: float = 0.001,
max_iters: int = 100,
armijo_params: Optional[dict] = None,
golden_section_bounds: Optional[tuple] = None,
) -> GradientDescentResult1D:
"""
Gradient descent for 1D function.
Args:
func: Function to minimize
x0: Starting point
step_method: Step selection method ("constant", "golden_section", "armijo")
step_size: Step size for constant method
eps_x: Tolerance for x convergence
eps_f: Tolerance for f convergence
max_iters: Maximum number of iterations
armijo_params: Parameters for Armijo rule (d_init, epsilon, theta)
golden_section_bounds: Search bounds for golden section (a, b)
Returns:
GradientDescentResult1D with trajectory and final result
"""
x = x0
iterations: List[IterationInfo1D] = []
converged = False
armijo_params = armijo_params or {"d_init": 1.0, "epsilon": 0.1, "theta": 0.5}
for k in range(max_iters):
f_x = func(x)
grad = func.gradient(x)
# Select step size
if step_method == "constant":
alpha = step_size
elif step_method == "golden_section":
# Optimize phi(alpha) = f(x - alpha * grad) using golden section
bounds = golden_section_bounds or (0.0, 2.0)
phi = lambda a: func(x - a * grad)
alpha = golden_section_search(phi, bounds[0], bounds[1])
elif step_method == "armijo":
alpha = armijo_step_1d(
func, x, grad,
d_init=armijo_params.get("d_init", 1.0),
epsilon=armijo_params.get("epsilon", 0.1),
theta=armijo_params.get("theta", 0.5),
)
else:
raise ValueError(f"Unknown step method: {step_method}")
iterations.append(IterationInfo1D(
iteration=k + 1,
x=x,
f_x=f_x,
grad=grad,
step_size=alpha,
))
# Update x
x_new = x - alpha * grad
f_new = func(x_new)
# Check convergence
if abs(x_new - x) < eps_x and abs(f_new - f_x) < eps_f:
x = x_new
converged = True
break
x = x_new
# Add final point
iterations.append(IterationInfo1D(
iteration=len(iterations) + 1,
x=x,
f_x=func(x),
grad=func.gradient(x),
step_size=0.0,
))
method_names = {
"constant": "Константный шаг",
"golden_section": "Золотое сечение",
"armijo": "Правило Армихо",
}
return GradientDescentResult1D(
x_star=x,
f_star=func(x),
iterations=iterations,
converged=converged,
method=method_names.get(step_method, step_method),
)
def gradient_descent_2d(
func: Function2D,
x0: np.ndarray,
step_method: StepMethod = "constant",
step_size: float = 0.01,
eps_x: float = 1e-5,
eps_f: float = 1e-6,
max_iters: int = 1000,
armijo_params: Optional[dict] = None,
golden_section_bounds: Optional[tuple] = None,
) -> GradientDescentResult2D:
"""
Gradient descent for 2D function.
Args:
func: Function to minimize
x0: Starting point [x1, x2]
step_method: Step selection method ("constant", "golden_section", "armijo")
step_size: Step size for constant method
eps_x: Tolerance for x convergence
eps_f: Tolerance for f convergence
max_iters: Maximum number of iterations
armijo_params: Parameters for Armijo rule
golden_section_bounds: Search bounds for golden section
Returns:
GradientDescentResult2D with trajectory and final result
"""
x = np.array(x0, dtype=float)
iterations: List[IterationInfo2D] = []
converged = False
armijo_params = armijo_params or {"d_init": 1.0, "epsilon": 0.1, "theta": 0.5}
for k in range(max_iters):
f_x = func(x)
grad = func.gradient(x)
grad_norm = np.linalg.norm(grad)
# Check if gradient is too small
if grad_norm < 1e-10:
converged = True
iterations.append(IterationInfo2D(
iteration=k + 1,
x=x.copy(),
f_x=f_x,
grad=grad.copy(),
step_size=0.0,
))
break
# Select step size
if step_method == "constant":
alpha = step_size
elif step_method == "golden_section":
bounds = golden_section_bounds or (0.0, 1.0)
phi = lambda a: func(x - a * grad)
alpha = golden_section_search(phi, bounds[0], bounds[1])
elif step_method == "armijo":
alpha = armijo_step(
func, x, grad,
d_init=armijo_params.get("d_init", 1.0),
epsilon=armijo_params.get("epsilon", 0.1),
theta=armijo_params.get("theta", 0.5),
)
else:
raise ValueError(f"Unknown step method: {step_method}")
iterations.append(IterationInfo2D(
iteration=k + 1,
x=x.copy(),
f_x=f_x,
grad=grad.copy(),
step_size=alpha,
))
# Update x
x_new = x - alpha * grad
f_new = func(x_new)
# Check convergence
if np.linalg.norm(x_new - x) < eps_x and abs(f_new - f_x) < eps_f:
x = x_new
converged = True
break
x = x_new
# Add final point
iterations.append(IterationInfo2D(
iteration=len(iterations) + 1,
x=x.copy(),
f_x=func(x),
grad=func.gradient(x),
step_size=0.0,
))
method_names = {
"constant": "Константный шаг",
"golden_section": "Золотое сечение",
"armijo": "Правило Армихо",
}
return GradientDescentResult2D(
x_star=x,
f_star=func(x),
iterations=iterations,
converged=converged,
method=method_names.get(step_method, step_method),
)
def heavy_ball_1d(
func: Function1D,
x0: float,
alpha: float = 0.1,
beta: float = 0.9,
eps_x: float = 0.05,
eps_f: float = 0.001,
max_iters: int = 100,
) -> GradientDescentResult1D:
"""
Heavy Ball method for 1D function.
x_{k+1} = x_k - α f'(x_k) + β (x_k - x_{k-1})
Args:
func: Function to minimize
x0: Starting point
alpha: Step size (learning rate)
beta: Momentum parameter (0 <= beta < 1)
eps_x: Tolerance for x convergence
eps_f: Tolerance for f convergence
max_iters: Maximum number of iterations
Returns:
GradientDescentResult1D with trajectory and final result
"""
x = x0
x_prev = x0 # For first iteration, no momentum
iterations: List[IterationInfo1D] = []
converged = False
for k in range(max_iters):
f_x = func(x)
grad = func.gradient(x)
# Heavy ball update: x_{k+1} = x_k - α∇f(x_k) + β(x_k - x_{k-1})
momentum = beta * (x - x_prev) if k > 0 else 0.0
iterations.append(IterationInfo1D(
iteration=k + 1,
x=x,
f_x=f_x,
grad=grad,
step_size=alpha,
))
# Update x
x_new = x - alpha * grad + momentum
f_new = func(x_new)
# Check convergence
if abs(x_new - x) < eps_x and abs(f_new - f_x) < eps_f:
x_prev = x
x = x_new
converged = True
break
x_prev = x
x = x_new
# Add final point
iterations.append(IterationInfo1D(
iteration=len(iterations) + 1,
x=x,
f_x=func(x),
grad=func.gradient(x),
step_size=0.0,
))
return GradientDescentResult1D(
x_star=x,
f_star=func(x),
iterations=iterations,
converged=converged,
method=f"Тяжёлый шарик (α={alpha}, β={beta})",
)
def heavy_ball_2d(
func: Function2D,
x0: np.ndarray,
alpha: float = 0.01,
beta: float = 0.9,
eps_x: float = 1e-5,
eps_f: float = 1e-6,
max_iters: int = 1000,
) -> GradientDescentResult2D:
"""
Heavy Ball method for 2D function.
x_{k+1} = x_k - α ∇f(x_k) + β (x_k - x_{k-1})
Args:
func: Function to minimize
x0: Starting point [x1, x2]
alpha: Step size (learning rate)
beta: Momentum parameter (0 <= beta < 1)
eps_x: Tolerance for x convergence
eps_f: Tolerance for f convergence
max_iters: Maximum number of iterations
Returns:
GradientDescentResult2D with trajectory and final result
"""
x = np.array(x0, dtype=float)
x_prev = x.copy() # For first iteration, no momentum
iterations: List[IterationInfo2D] = []
converged = False
for k in range(max_iters):
f_x = func(x)
grad = func.gradient(x)
grad_norm = np.linalg.norm(grad)
# Check if gradient is too small
if grad_norm < 1e-10:
converged = True
iterations.append(IterationInfo2D(
iteration=k + 1,
x=x.copy(),
f_x=f_x,
grad=grad.copy(),
step_size=0.0,
))
break
# Heavy ball update: x_{k+1} = x_k - α∇f(x_k) + β(x_k - x_{k-1})
momentum = beta * (x - x_prev) if k > 0 else np.zeros_like(x)
iterations.append(IterationInfo2D(
iteration=k + 1,
x=x.copy(),
f_x=f_x,
grad=grad.copy(),
step_size=alpha,
))
# Update x
x_new = x - alpha * grad + momentum
f_new = func(x_new)
# Check convergence
if np.linalg.norm(x_new - x) < eps_x and abs(f_new - f_x) < eps_f:
x_prev = x.copy()
x = x_new
converged = True
break
x_prev = x.copy()
x = x_new
# Add final point
iterations.append(IterationInfo2D(
iteration=len(iterations) + 1,
x=x.copy(),
f_x=func(x),
grad=func.gradient(x),
step_size=0.0,
))
return GradientDescentResult2D(
x_star=x,
f_star=func(x),
iterations=iterations,
converged=converged,
method=f"Тяжёлый шарик (α={alpha}, β={beta})",
)