Files

105 lines
3.3 KiB
Python

from __future__ import annotations
from collections import Counter
import cirq
import numpy as np
import scipy as sp
def main(qubit_count=3):
data = [] # we'll store here the results
# define a secret string:
secret_string = np.random.randint(2, size=qubit_count)
print(f"Secret string = {secret_string}")
n_samples = 100
for _ in range(n_samples):
flag = False # check if we have a linearly independent set of measures
while not flag:
# Choose qubits to use.
input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] # input x
output_qubits = [
cirq.GridQubit(i + qubit_count, 0) for i in range(qubit_count)
] # output f(x)
# Pick coefficients for the oracle and create a circuit to query it.
oracle = make_oracle(input_qubits, output_qubits, secret_string)
# Embed oracle into special quantum circuit querying it exactly once
circuit = make_simon_circuit(input_qubits, output_qubits, oracle)
# Sample from the circuit a n-1 times (n = qubit_count).
simulator = cirq.Simulator()
results = [
simulator.run(circuit).measurements["result"][0]
for _ in range(qubit_count - 1)
]
# Classical Post-Processing:
flag = post_processing(data, results)
freqs = Counter(data)
print("Circuit:")
print(circuit)
print(f"Most common answer was : {freqs.most_common(1)[0]}")
def make_oracle(input_qubits, output_qubits, secret_string):
"""Gates implementing the function f(a) = f(b) iff a ⨁ b = s"""
# Copy contents to output qubits:
for control_qubit, target_qubit in zip(input_qubits, output_qubits):
yield cirq.CNOT(control_qubit, target_qubit)
# Create mapping:
if sum(secret_string): # check if the secret string is non-zero
# Find significant bit of secret string (first non-zero bit)
significant = list(secret_string).index(1)
# Add secret string to input according to the significant bit:
for j in range(len(secret_string)):
if secret_string[j] > 0:
yield cirq.CNOT(input_qubits[significant], output_qubits[j])
def make_simon_circuit(input_qubits, output_qubits, oracle):
"""Solves for the secret period s of a 2-to-1 function such that
f(x) = f(y) iff x ⨁ y = s
"""
c = cirq.Circuit()
# Initialize qubits.
c.append([cirq.H.on_each(*input_qubits)])
# Query oracle.
c.append(oracle)
# Measure in X basis.
c.append([cirq.H.on_each(*input_qubits), cirq.measure(*input_qubits, key="result")])
return c
def post_processing(data, results):
"""Solves a system of equations with modulo 2 numbers"""
sing_values = sp.linalg.svdvals(results)
tolerance = 1e-5
if (
sum(sing_values < tolerance) == 0
): # check if measurements are linearly dependent
flag = True
null_space = sp.linalg.null_space(results).T[0]
solution = np.around(null_space, 3) # chop very small values
minval = abs(min(solution[np.nonzero(solution)], key=abs))
solution = (solution / minval % 2).astype(int) # renormalize vector mod 2
data.append(str(solution))
return flag
if __name__ == "__main__":
main()