Compare commits
5 Commits
7f16a5c17a
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| ab18d9770f | |||
| 6a22dc3ef7 | |||
| f90a641754 | |||
| 10bd6db2b8 | |||
| d82fde7116 |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,4 +1,4 @@
|
||||
data
|
||||
build
|
||||
out.txt
|
||||
result.csv
|
||||
*.csv
|
||||
22
README.md
22
README.md
@@ -10,10 +10,30 @@
|
||||
не менее чем на 10% от даты начала интервала, вместе с минимальными и максимальными
|
||||
значениями Open и Close за все дни внутри интервала.
|
||||
|
||||
## Параллельное чтение данных
|
||||
|
||||
Нет смысла параллельно читать данные из NFS, так как в реальности файлы с данными
|
||||
будут лежать только на NFS сервере. То есть другие узлы лишь отправляют сетевые запросы
|
||||
на NFS сервер, который уже читает реальные данные с диска и лишь затем отправляет
|
||||
их другим узлам.
|
||||
|
||||
Чтобы этого избежать, нужно на всех машинах скопировать файлы с данными в их реальные
|
||||
файловые системы. Например в папку `/data`.
|
||||
|
||||
```sh
|
||||
# На каждом узле создаем директорию /data
|
||||
sudo mkdir /data
|
||||
sudo chown $USER /data
|
||||
|
||||
# Копируем данные
|
||||
cd /mnt/shared/supercomputers/data
|
||||
cp data.csv /data/
|
||||
```
|
||||
|
||||
## Сборка
|
||||
|
||||
Проект обязательно должен быть расположен в общей директории для всех узлов,
|
||||
например, в `/mnt/shared/supercomputers/bitcoin-project/build`.
|
||||
например, в `/mnt/shared/supercomputers/build`.
|
||||
Перед запуском указать актуальный путь в `run.slurm`.
|
||||
|
||||
```sh
|
||||
|
||||
445
data.ipynb
445
data.ipynb
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 20,
|
||||
"id": "2acce44b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -12,7 +12,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 21,
|
||||
"id": "5ba70af7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -111,7 +111,7 @@
|
||||
"7317758 0.410369 "
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -124,8 +124,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "d4b22f3b",
|
||||
"execution_count": 23,
|
||||
"id": "3b320537",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -150,67 +150,190 @@
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Timestamp</th>\n",
|
||||
" <th>Low</th>\n",
|
||||
" <th>High</th>\n",
|
||||
" <th>Open</th>\n",
|
||||
" <th>High</th>\n",
|
||||
" <th>Low</th>\n",
|
||||
" <th>Close</th>\n",
|
||||
" <th>Volume</th>\n",
|
||||
" <th>Avg</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>5078</th>\n",
|
||||
" <td>2025-11-26</td>\n",
|
||||
" <td>86304.0</td>\n",
|
||||
" <td>90646.0</td>\n",
|
||||
" <td>87331.0</td>\n",
|
||||
" <td>90477.0</td>\n",
|
||||
" <th>7317754</th>\n",
|
||||
" <td>2025-11-30 23:55:00+00:00</td>\n",
|
||||
" <td>90405.0</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>90403.0</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>0.531700</td>\n",
|
||||
" <td>90427.5</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5079</th>\n",
|
||||
" <td>2025-11-27</td>\n",
|
||||
" <td>90091.0</td>\n",
|
||||
" <td>91926.0</td>\n",
|
||||
" <td>90476.0</td>\n",
|
||||
" <td>91325.0</td>\n",
|
||||
" <th>7317755</th>\n",
|
||||
" <td>2025-11-30 23:56:00+00:00</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>90481.0</td>\n",
|
||||
" <td>90420.0</td>\n",
|
||||
" <td>90420.0</td>\n",
|
||||
" <td>0.055547</td>\n",
|
||||
" <td>90450.5</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5080</th>\n",
|
||||
" <td>2025-11-28</td>\n",
|
||||
" <td>90233.0</td>\n",
|
||||
" <td>93091.0</td>\n",
|
||||
" <td>91326.0</td>\n",
|
||||
" <td>90913.0</td>\n",
|
||||
" <th>7317756</th>\n",
|
||||
" <td>2025-11-30 23:57:00+00:00</td>\n",
|
||||
" <td>90412.0</td>\n",
|
||||
" <td>90458.0</td>\n",
|
||||
" <td>90396.0</td>\n",
|
||||
" <td>90435.0</td>\n",
|
||||
" <td>0.301931</td>\n",
|
||||
" <td>90427.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5081</th>\n",
|
||||
" <td>2025-11-29</td>\n",
|
||||
" <td>90216.0</td>\n",
|
||||
" <td>91179.0</td>\n",
|
||||
" <td>90913.0</td>\n",
|
||||
" <td>90832.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5082</th>\n",
|
||||
" <td>2025-11-30</td>\n",
|
||||
" <th>7317757</th>\n",
|
||||
" <td>2025-11-30 23:58:00+00:00</td>\n",
|
||||
" <td>90428.0</td>\n",
|
||||
" <td>90428.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>4.591653</td>\n",
|
||||
" <td>90395.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317758</th>\n",
|
||||
" <td>2025-11-30 23:59:00+00:00</td>\n",
|
||||
" <td>90363.0</td>\n",
|
||||
" <td>90386.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>91969.0</td>\n",
|
||||
" <td>90832.0</td>\n",
|
||||
" <td>90382.0</td>\n",
|
||||
" <td>0.410369</td>\n",
|
||||
" <td>90374.0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Timestamp Low High Open Close\n",
|
||||
"5078 2025-11-26 86304.0 90646.0 87331.0 90477.0\n",
|
||||
"5079 2025-11-27 90091.0 91926.0 90476.0 91325.0\n",
|
||||
"5080 2025-11-28 90233.0 93091.0 91326.0 90913.0\n",
|
||||
"5081 2025-11-29 90216.0 91179.0 90913.0 90832.0\n",
|
||||
"5082 2025-11-30 90362.0 91969.0 90832.0 90382.0"
|
||||
" Timestamp Open High Low Close \\\n",
|
||||
"7317754 2025-11-30 23:55:00+00:00 90405.0 90452.0 90403.0 90452.0 \n",
|
||||
"7317755 2025-11-30 23:56:00+00:00 90452.0 90481.0 90420.0 90420.0 \n",
|
||||
"7317756 2025-11-30 23:57:00+00:00 90412.0 90458.0 90396.0 90435.0 \n",
|
||||
"7317757 2025-11-30 23:58:00+00:00 90428.0 90428.0 90362.0 90362.0 \n",
|
||||
"7317758 2025-11-30 23:59:00+00:00 90363.0 90386.0 90362.0 90382.0 \n",
|
||||
"\n",
|
||||
" Volume Avg \n",
|
||||
"7317754 0.531700 90427.5 \n",
|
||||
"7317755 0.055547 90450.5 \n",
|
||||
"7317756 0.301931 90427.0 \n",
|
||||
"7317757 4.591653 90395.0 \n",
|
||||
"7317758 0.410369 90374.0 "
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df['Avg'] = (df['Low'] + df['High']) / 2\n",
|
||||
"df.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "4b1cd63c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Timestamp</th>\n",
|
||||
" <th>Avg</th>\n",
|
||||
" <th>OpenMin</th>\n",
|
||||
" <th>OpenMax</th>\n",
|
||||
" <th>CloseMin</th>\n",
|
||||
" <th>CloseMax</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>5078</th>\n",
|
||||
" <td>2025-11-26</td>\n",
|
||||
" <td>88057.301736</td>\n",
|
||||
" <td>86312.0</td>\n",
|
||||
" <td>90574.0</td>\n",
|
||||
" <td>86323.0</td>\n",
|
||||
" <td>90574.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5079</th>\n",
|
||||
" <td>2025-11-27</td>\n",
|
||||
" <td>91245.092708</td>\n",
|
||||
" <td>90126.0</td>\n",
|
||||
" <td>91888.0</td>\n",
|
||||
" <td>90126.0</td>\n",
|
||||
" <td>91925.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5080</th>\n",
|
||||
" <td>2025-11-28</td>\n",
|
||||
" <td>91324.308681</td>\n",
|
||||
" <td>90255.0</td>\n",
|
||||
" <td>92970.0</td>\n",
|
||||
" <td>90283.0</td>\n",
|
||||
" <td>92966.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5081</th>\n",
|
||||
" <td>2025-11-29</td>\n",
|
||||
" <td>90746.479514</td>\n",
|
||||
" <td>90265.0</td>\n",
|
||||
" <td>91158.0</td>\n",
|
||||
" <td>90279.0</td>\n",
|
||||
" <td>91179.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5082</th>\n",
|
||||
" <td>2025-11-30</td>\n",
|
||||
" <td>91187.356250</td>\n",
|
||||
" <td>90363.0</td>\n",
|
||||
" <td>91940.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>91940.0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Timestamp Avg OpenMin OpenMax CloseMin CloseMax\n",
|
||||
"5078 2025-11-26 88057.301736 86312.0 90574.0 86323.0 90574.0\n",
|
||||
"5079 2025-11-27 91245.092708 90126.0 91888.0 90126.0 91925.0\n",
|
||||
"5080 2025-11-28 91324.308681 90255.0 92970.0 90283.0 92966.0\n",
|
||||
"5081 2025-11-29 90746.479514 90265.0 91158.0 90279.0 91179.0\n",
|
||||
"5082 2025-11-30 91187.356250 90363.0 91940.0 90362.0 91940.0"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -218,7 +341,13 @@
|
||||
"source": [
|
||||
"df_days = (\n",
|
||||
" df.groupby(df[\"Timestamp\"].dt.date)\n",
|
||||
" .agg({\"Low\": \"min\", \"High\": \"max\", \"Open\": \"first\", \"Close\": \"last\"})\n",
|
||||
" .agg(\n",
|
||||
" Avg=(\"Avg\", \"mean\"),\n",
|
||||
" OpenMin=(\"Open\", \"min\"),\n",
|
||||
" OpenMax=(\"Open\", \"max\"),\n",
|
||||
" CloseMin=(\"Close\", \"min\"),\n",
|
||||
" CloseMax=(\"Close\", \"max\"),\n",
|
||||
" )\n",
|
||||
" .reset_index()\n",
|
||||
")\n",
|
||||
"df_days.tail()"
|
||||
@@ -226,111 +355,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "91823496",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Timestamp</th>\n",
|
||||
" <th>Low</th>\n",
|
||||
" <th>High</th>\n",
|
||||
" <th>Open</th>\n",
|
||||
" <th>Close</th>\n",
|
||||
" <th>Avg</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>5078</th>\n",
|
||||
" <td>2025-11-26</td>\n",
|
||||
" <td>86304.0</td>\n",
|
||||
" <td>90646.0</td>\n",
|
||||
" <td>87331.0</td>\n",
|
||||
" <td>90477.0</td>\n",
|
||||
" <td>88475.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5079</th>\n",
|
||||
" <td>2025-11-27</td>\n",
|
||||
" <td>90091.0</td>\n",
|
||||
" <td>91926.0</td>\n",
|
||||
" <td>90476.0</td>\n",
|
||||
" <td>91325.0</td>\n",
|
||||
" <td>91008.5</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5080</th>\n",
|
||||
" <td>2025-11-28</td>\n",
|
||||
" <td>90233.0</td>\n",
|
||||
" <td>93091.0</td>\n",
|
||||
" <td>91326.0</td>\n",
|
||||
" <td>90913.0</td>\n",
|
||||
" <td>91662.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5081</th>\n",
|
||||
" <td>2025-11-29</td>\n",
|
||||
" <td>90216.0</td>\n",
|
||||
" <td>91179.0</td>\n",
|
||||
" <td>90913.0</td>\n",
|
||||
" <td>90832.0</td>\n",
|
||||
" <td>90697.5</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5082</th>\n",
|
||||
" <td>2025-11-30</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>91969.0</td>\n",
|
||||
" <td>90832.0</td>\n",
|
||||
" <td>90382.0</td>\n",
|
||||
" <td>91165.5</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Timestamp Low High Open Close Avg\n",
|
||||
"5078 2025-11-26 86304.0 90646.0 87331.0 90477.0 88475.0\n",
|
||||
"5079 2025-11-27 90091.0 91926.0 90476.0 91325.0 91008.5\n",
|
||||
"5080 2025-11-28 90233.0 93091.0 91326.0 90913.0 91662.0\n",
|
||||
"5081 2025-11-29 90216.0 91179.0 90913.0 90832.0 90697.5\n",
|
||||
"5082 2025-11-30 90362.0 91969.0 90832.0 90382.0 91165.5"
|
||||
]
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_days[\"Avg\"] = (df_days[\"Low\"] + df_days[\"High\"]) / 2\n",
|
||||
"df_days.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"execution_count": 26,
|
||||
"id": "9a7b3310",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -358,6 +383,8 @@
|
||||
" <th>start_date</th>\n",
|
||||
" <th>end_date</th>\n",
|
||||
" <th>min_open</th>\n",
|
||||
" <th>max_open</th>\n",
|
||||
" <th>min_close</th>\n",
|
||||
" <th>max_close</th>\n",
|
||||
" <th>start_avg</th>\n",
|
||||
" <th>end_avg</th>\n",
|
||||
@@ -366,76 +393,86 @@
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>335</th>\n",
|
||||
" <th>316</th>\n",
|
||||
" <td>2025-02-27</td>\n",
|
||||
" <td>2025-04-23</td>\n",
|
||||
" <td>76252.0</td>\n",
|
||||
" <td>94273.0</td>\n",
|
||||
" <td>84801.5</td>\n",
|
||||
" <td>93335.0</td>\n",
|
||||
" <td>0.100629</td>\n",
|
||||
" <td>2025-04-25</td>\n",
|
||||
" <td>74509.0</td>\n",
|
||||
" <td>95801.0</td>\n",
|
||||
" <td>74515.0</td>\n",
|
||||
" <td>95800.0</td>\n",
|
||||
" <td>85166.063889</td>\n",
|
||||
" <td>94303.907292</td>\n",
|
||||
" <td>0.107294</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>336</th>\n",
|
||||
" <td>2025-04-24</td>\n",
|
||||
" <td>2025-05-09</td>\n",
|
||||
" <td>93730.0</td>\n",
|
||||
" <td>103261.0</td>\n",
|
||||
" <td>92867.5</td>\n",
|
||||
" <td>103341.0</td>\n",
|
||||
" <td>0.112779</td>\n",
|
||||
" <th>317</th>\n",
|
||||
" <td>2025-04-26</td>\n",
|
||||
" <td>2025-05-11</td>\n",
|
||||
" <td>92877.0</td>\n",
|
||||
" <td>104971.0</td>\n",
|
||||
" <td>92872.0</td>\n",
|
||||
" <td>104965.0</td>\n",
|
||||
" <td>94500.950347</td>\n",
|
||||
" <td>104182.167708</td>\n",
|
||||
" <td>0.102446</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>337</th>\n",
|
||||
" <td>2025-05-10</td>\n",
|
||||
" <th>318</th>\n",
|
||||
" <td>2025-05-12</td>\n",
|
||||
" <td>2025-07-11</td>\n",
|
||||
" <td>100990.0</td>\n",
|
||||
" <td>117579.0</td>\n",
|
||||
" <td>103915.0</td>\n",
|
||||
" <td>117032.5</td>\n",
|
||||
" <td>0.126233</td>\n",
|
||||
" <td>98384.0</td>\n",
|
||||
" <td>118833.0</td>\n",
|
||||
" <td>98382.0</td>\n",
|
||||
" <td>118839.0</td>\n",
|
||||
" <td>103569.791319</td>\n",
|
||||
" <td>117463.666667</td>\n",
|
||||
" <td>0.134150</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>338</th>\n",
|
||||
" <th>319</th>\n",
|
||||
" <td>2025-07-12</td>\n",
|
||||
" <td>2025-11-04</td>\n",
|
||||
" <td>106470.0</td>\n",
|
||||
" <td>124728.0</td>\n",
|
||||
" <td>117599.0</td>\n",
|
||||
" <td>103079.0</td>\n",
|
||||
" <td>0.123470</td>\n",
|
||||
" <td>98944.0</td>\n",
|
||||
" <td>126202.0</td>\n",
|
||||
" <td>98943.0</td>\n",
|
||||
" <td>126202.0</td>\n",
|
||||
" <td>117640.026389</td>\n",
|
||||
" <td>103712.985764</td>\n",
|
||||
" <td>0.118387</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>339</th>\n",
|
||||
" <th>320</th>\n",
|
||||
" <td>2025-11-05</td>\n",
|
||||
" <td>2025-11-18</td>\n",
|
||||
" <td>92112.0</td>\n",
|
||||
" <td>105972.0</td>\n",
|
||||
" <td>101737.5</td>\n",
|
||||
" <td>91471.0</td>\n",
|
||||
" <td>0.100912</td>\n",
|
||||
" <td>89291.0</td>\n",
|
||||
" <td>107343.0</td>\n",
|
||||
" <td>89286.0</td>\n",
|
||||
" <td>107343.0</td>\n",
|
||||
" <td>102514.621181</td>\n",
|
||||
" <td>91705.833333</td>\n",
|
||||
" <td>0.105437</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" start_date end_date min_open max_close start_avg end_avg \\\n",
|
||||
"335 2025-02-27 2025-04-23 76252.0 94273.0 84801.5 93335.0 \n",
|
||||
"336 2025-04-24 2025-05-09 93730.0 103261.0 92867.5 103341.0 \n",
|
||||
"337 2025-05-10 2025-07-11 100990.0 117579.0 103915.0 117032.5 \n",
|
||||
"338 2025-07-12 2025-11-04 106470.0 124728.0 117599.0 103079.0 \n",
|
||||
"339 2025-11-05 2025-11-18 92112.0 105972.0 101737.5 91471.0 \n",
|
||||
" start_date end_date min_open max_open min_close max_close \\\n",
|
||||
"316 2025-02-27 2025-04-25 74509.0 95801.0 74515.0 95800.0 \n",
|
||||
"317 2025-04-26 2025-05-11 92877.0 104971.0 92872.0 104965.0 \n",
|
||||
"318 2025-05-12 2025-07-11 98384.0 118833.0 98382.0 118839.0 \n",
|
||||
"319 2025-07-12 2025-11-04 98944.0 126202.0 98943.0 126202.0 \n",
|
||||
"320 2025-11-05 2025-11-18 89291.0 107343.0 89286.0 107343.0 \n",
|
||||
"\n",
|
||||
" change \n",
|
||||
"335 0.100629 \n",
|
||||
"336 0.112779 \n",
|
||||
"337 0.126233 \n",
|
||||
"338 0.123470 \n",
|
||||
"339 0.100912 "
|
||||
" start_avg end_avg change \n",
|
||||
"316 85166.063889 94303.907292 0.107294 \n",
|
||||
"317 94500.950347 104182.167708 0.102446 \n",
|
||||
"318 103569.791319 117463.666667 0.134150 \n",
|
||||
"319 117640.026389 103712.985764 0.118387 \n",
|
||||
"320 102514.621181 91705.833333 0.105437 "
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -455,8 +492,10 @@
|
||||
" intervals.append({\n",
|
||||
" \"start_date\": df_days.loc[start_idx, \"Timestamp\"],\n",
|
||||
" \"end_date\": df_days.loc[i, \"Timestamp\"],\n",
|
||||
" \"min_open\": interval[\"Open\"].min(),\n",
|
||||
" \"max_close\": interval[\"Close\"].max(),\n",
|
||||
" \"min_open\": interval[\"OpenMin\"].min(),\n",
|
||||
" \"max_open\": interval[\"OpenMax\"].max(),\n",
|
||||
" \"min_close\": interval[\"CloseMin\"].min(),\n",
|
||||
" \"max_close\": interval[\"CloseMax\"].max(),\n",
|
||||
" \"start_avg\": price_base,\n",
|
||||
" \"end_avg\": price_now,\n",
|
||||
" \"change\": change,\n",
|
||||
@@ -470,6 +509,14 @@
|
||||
"df_intervals = pd.DataFrame(intervals)\n",
|
||||
"df_intervals.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "07f1cd58",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
10
run.slurm
10
run.slurm
@@ -5,8 +5,14 @@
|
||||
#SBATCH --cpus-per-task=2
|
||||
#SBATCH --output=out.txt
|
||||
|
||||
# Количество CPU потоков на узел (должно соответствовать cpus-per-task)
|
||||
export NUM_CPU_THREADS=2
|
||||
# Путь к файлу данных (должен существовать на всех узлах)
|
||||
export DATA_PATH="/mnt/shared/supercomputers/data/data.csv"
|
||||
|
||||
# Доли данных для каждого ранка (сумма определяет пропорции)
|
||||
export DATA_READ_SHARES="10,12,13,13"
|
||||
|
||||
# Размер перекрытия в байтах для обработки границ строк
|
||||
export READ_OVERLAP_BYTES=131072
|
||||
|
||||
cd /mnt/shared/supercomputers/build
|
||||
mpirun -np $SLURM_NTASKS ./bitcoin_app
|
||||
|
||||
@@ -1,87 +1,48 @@
|
||||
#include "aggregation.hpp"
|
||||
#include <map>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <cmath>
|
||||
|
||||
std::vector<DayStats> aggregate_days(const std::vector<Record>& records) {
|
||||
// Группируем записи по дням
|
||||
std::map<DayIndex, std::vector<const Record*>> day_records;
|
||||
// Накопители для каждого дня
|
||||
struct DayAccumulator {
|
||||
double avg_sum = 0.0;
|
||||
double open_min = std::numeric_limits<double>::max();
|
||||
double open_max = std::numeric_limits<double>::lowest();
|
||||
double close_min = std::numeric_limits<double>::max();
|
||||
double close_max = std::numeric_limits<double>::lowest();
|
||||
int64_t count = 0;
|
||||
};
|
||||
|
||||
std::map<DayIndex, DayAccumulator> days;
|
||||
|
||||
for (const auto& r : records) {
|
||||
DayIndex day = static_cast<DayIndex>(r.timestamp) / 86400;
|
||||
day_records[day].push_back(&r);
|
||||
auto& acc = days[day];
|
||||
|
||||
double avg = (r.low + r.high) / 2.0;
|
||||
acc.avg_sum += avg;
|
||||
acc.open_min = std::min(acc.open_min, r.open);
|
||||
acc.open_max = std::max(acc.open_max, r.open);
|
||||
acc.close_min = std::min(acc.close_min, r.close);
|
||||
acc.close_max = std::max(acc.close_max, r.close);
|
||||
acc.count++;
|
||||
}
|
||||
|
||||
std::vector<DayStats> result;
|
||||
result.reserve(day_records.size());
|
||||
|
||||
for (auto& [day, recs] : day_records) {
|
||||
// Сортируем по timestamp для определения first/last
|
||||
std::sort(recs.begin(), recs.end(),
|
||||
[](const Record* a, const Record* b) {
|
||||
return a->timestamp < b->timestamp;
|
||||
});
|
||||
result.reserve(days.size());
|
||||
|
||||
for (const auto& [day, acc] : days) {
|
||||
DayStats stats;
|
||||
stats.day = day;
|
||||
stats.low = std::numeric_limits<double>::max();
|
||||
stats.high = std::numeric_limits<double>::lowest();
|
||||
stats.open = recs.front()->open;
|
||||
stats.close = recs.back()->close;
|
||||
stats.first_ts = recs.front()->timestamp;
|
||||
stats.last_ts = recs.back()->timestamp;
|
||||
|
||||
for (const auto* r : recs) {
|
||||
stats.low = std::min(stats.low, r->low);
|
||||
stats.high = std::max(stats.high, r->high);
|
||||
}
|
||||
|
||||
stats.avg = (stats.low + stats.high) / 2.0;
|
||||
|
||||
stats.avg = acc.avg_sum / static_cast<double>(acc.count);
|
||||
stats.open_min = acc.open_min;
|
||||
stats.open_max = acc.open_max;
|
||||
stats.close_min = acc.close_min;
|
||||
stats.close_max = acc.close_max;
|
||||
stats.count = acc.count;
|
||||
result.push_back(stats);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<DayStats> merge_day_stats(const std::vector<DayStats>& all_stats) {
|
||||
// Объединяем статистику по одинаковым дням (если такие есть)
|
||||
std::map<DayIndex, DayStats> merged;
|
||||
|
||||
for (const auto& s : all_stats) {
|
||||
auto it = merged.find(s.day);
|
||||
if (it == merged.end()) {
|
||||
merged[s.day] = s;
|
||||
} else {
|
||||
// Объединяем данные за один день
|
||||
auto& m = it->second;
|
||||
m.low = std::min(m.low, s.low);
|
||||
m.high = std::max(m.high, s.high);
|
||||
|
||||
// open берём от записи с меньшим timestamp
|
||||
if (s.first_ts < m.first_ts) {
|
||||
m.open = s.open;
|
||||
m.first_ts = s.first_ts;
|
||||
}
|
||||
|
||||
// close берём от записи с большим timestamp
|
||||
if (s.last_ts > m.last_ts) {
|
||||
m.close = s.close;
|
||||
m.last_ts = s.last_ts;
|
||||
}
|
||||
|
||||
m.avg = (m.low + m.high) / 2.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Преобразуем в отсортированный вектор
|
||||
std::vector<DayStats> result;
|
||||
result.reserve(merged.size());
|
||||
|
||||
for (auto& [day, stats] : merged) {
|
||||
result.push_back(stats);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
@@ -3,12 +3,6 @@
|
||||
#include "record.hpp"
|
||||
#include "day_stats.hpp"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
// Агрегация записей по дням на одном узле
|
||||
std::vector<DayStats> aggregate_days(const std::vector<Record>& records);
|
||||
|
||||
// Объединение агрегированных данных с разных узлов
|
||||
// (на случай если один день попал на разные узлы - но в нашей схеме это не должно случиться)
|
||||
std::vector<DayStats> merge_day_stats(const std::vector<DayStats>& all_stats);
|
||||
|
||||
|
||||
@@ -2,45 +2,133 @@
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
std::vector<Record> load_csv(const std::string& filename) {
|
||||
std::vector<Record> data;
|
||||
std::ifstream file(filename);
|
||||
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("Cannot open file: " + filename);
|
||||
bool parse_csv_line(const std::string& line, Record& record) {
|
||||
if (line.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string line;
|
||||
std::stringstream ss(line);
|
||||
std::string item;
|
||||
|
||||
// читаем первую строку (заголовок)
|
||||
std::getline(file, line);
|
||||
try {
|
||||
// timestamp
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.timestamp = std::stod(item);
|
||||
|
||||
while (std::getline(file, line)) {
|
||||
std::stringstream ss(line);
|
||||
std::string item;
|
||||
// open
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.open = std::stod(item);
|
||||
|
||||
Record row;
|
||||
// high
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.high = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.timestamp = std::stod(item);
|
||||
// low
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.low = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.open = std::stod(item);
|
||||
// close
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.close = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.high = std::stod(item);
|
||||
// volume
|
||||
if (!std::getline(ss, item, ',')) return false;
|
||||
// Volume может быть пустым или содержать данные
|
||||
if (item.empty()) {
|
||||
record.volume = 0.0;
|
||||
} else {
|
||||
record.volume = std::stod(item);
|
||||
}
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.low = std::stod(item);
|
||||
return true;
|
||||
} catch (const std::exception&) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.close = std::stod(item);
|
||||
std::vector<Record> load_csv_parallel(int rank, int size) {
|
||||
std::vector<Record> data;
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.volume = std::stod(item);
|
||||
// Читаем настройки из переменных окружения
|
||||
std::string data_path = get_data_path();
|
||||
std::vector<int> shares = get_data_read_shares();
|
||||
int64_t overlap_bytes = get_read_overlap_bytes();
|
||||
|
||||
data.push_back(row);
|
||||
// Получаем размер файла
|
||||
int64_t file_size = get_file_size(data_path);
|
||||
|
||||
// Вычисляем диапазон байт для этого ранка
|
||||
ByteRange range = calculate_byte_range(rank, size, file_size, shares, overlap_bytes);
|
||||
|
||||
// Открываем файл и читаем нужный диапазон
|
||||
std::ifstream file(data_path, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("Cannot open file: " + data_path);
|
||||
}
|
||||
|
||||
// Переходим к началу диапазона
|
||||
file.seekg(range.start);
|
||||
|
||||
// Читаем данные в буфер
|
||||
int64_t bytes_to_read = range.end - range.start;
|
||||
std::vector<char> buffer(bytes_to_read);
|
||||
file.read(buffer.data(), bytes_to_read);
|
||||
int64_t bytes_read = file.gcount();
|
||||
|
||||
file.close();
|
||||
|
||||
// Преобразуем в строку для удобства парсинга
|
||||
std::string content(buffer.data(), bytes_read);
|
||||
|
||||
// Находим позицию начала первой полной строки
|
||||
size_t parse_start = 0;
|
||||
if (rank == 0) {
|
||||
// Первый ранк: пропускаем заголовок (первую строку)
|
||||
size_t header_end = content.find('\n');
|
||||
if (header_end != std::string::npos) {
|
||||
parse_start = header_end + 1;
|
||||
}
|
||||
} else {
|
||||
// Остальные ранки: начинаем с первого \n (пропускаем неполную строку)
|
||||
size_t first_newline = content.find('\n');
|
||||
if (first_newline != std::string::npos) {
|
||||
parse_start = first_newline + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Находим позицию конца последней полной строки
|
||||
size_t parse_end = content.size();
|
||||
if (rank != size - 1) {
|
||||
// Не последний ранк: ищем последний \n
|
||||
size_t last_newline = content.rfind('\n');
|
||||
if (last_newline != std::string::npos && last_newline > parse_start) {
|
||||
parse_end = last_newline;
|
||||
}
|
||||
}
|
||||
|
||||
// Парсим строки
|
||||
size_t pos = parse_start;
|
||||
while (pos < parse_end) {
|
||||
size_t line_end = content.find('\n', pos);
|
||||
if (line_end == std::string::npos || line_end > parse_end) {
|
||||
line_end = parse_end;
|
||||
}
|
||||
|
||||
std::string line = content.substr(pos, line_end - pos);
|
||||
|
||||
// Убираем \r если есть (Windows line endings)
|
||||
if (!line.empty() && line.back() == '\r') {
|
||||
line.pop_back();
|
||||
}
|
||||
|
||||
Record record;
|
||||
if (parse_csv_line(line, record)) {
|
||||
data.push_back(record);
|
||||
}
|
||||
|
||||
pos = line_end + 1;
|
||||
}
|
||||
|
||||
return data;
|
||||
|
||||
@@ -2,5 +2,14 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "record.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
std::vector<Record> load_csv(const std::string& filename);
|
||||
// Параллельное чтение CSV файла для MPI
|
||||
// rank - номер текущего ранка
|
||||
// size - общее количество ранков
|
||||
// Возвращает вектор записей, прочитанных этим ранком
|
||||
std::vector<Record> load_csv_parallel(int rank, int size);
|
||||
|
||||
// Парсинг одной строки CSV в Record
|
||||
// Возвращает true если парсинг успешен
|
||||
bool parse_csv_line(const std::string& line, Record& record);
|
||||
|
||||
@@ -1,28 +1,15 @@
|
||||
#pragma once
|
||||
#include <cstdint>
|
||||
|
||||
using DayIndex = long long;
|
||||
using DayIndex = int64_t;
|
||||
|
||||
// Агрегированные данные за один день
|
||||
struct DayStats {
|
||||
DayIndex day; // индекс дня (timestamp / 86400)
|
||||
double low; // минимальный Low за день
|
||||
double high; // максимальный High за день
|
||||
double open; // первый Open за день
|
||||
double close; // последний Close за день
|
||||
double avg; // среднее = (low + high) / 2
|
||||
double first_ts; // timestamp первой записи (для определения порядка open)
|
||||
double last_ts; // timestamp последней записи (для определения close)
|
||||
double avg; // среднее значение (Low + High) / 2 по всем записям
|
||||
double open_min; // минимальный Open за день
|
||||
double open_max; // максимальный Open за день
|
||||
double close_min; // минимальный Close за день
|
||||
double close_max; // максимальный Close за день
|
||||
int64_t count; // количество записей, по которым агрегировали
|
||||
};
|
||||
|
||||
// Интервал с изменением >= 10%
|
||||
struct Interval {
|
||||
DayIndex start_day;
|
||||
DayIndex end_day;
|
||||
double min_open;
|
||||
double max_close;
|
||||
double start_avg;
|
||||
double end_avg;
|
||||
double change;
|
||||
};
|
||||
|
||||
|
||||
@@ -19,6 +19,16 @@ gpu_is_available_fn load_gpu_is_available() {
|
||||
return fn;
|
||||
}
|
||||
|
||||
bool gpu_is_available() {
|
||||
auto gpu_is_available_fn = load_gpu_is_available();
|
||||
|
||||
if (gpu_is_available_fn && gpu_is_available_fn()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
gpu_aggregate_days_fn load_gpu_aggregate_days() {
|
||||
void* h = get_gpu_lib_handle();
|
||||
if (!h) return nullptr;
|
||||
@@ -117,13 +127,12 @@ bool aggregate_days_gpu(
|
||||
for (const auto& gs : gpu_stats) {
|
||||
DayStats ds;
|
||||
ds.day = gs.day;
|
||||
ds.low = gs.low;
|
||||
ds.high = gs.high;
|
||||
ds.open = gs.open;
|
||||
ds.close = gs.close;
|
||||
ds.avg = gs.avg;
|
||||
ds.first_ts = gs.first_ts;
|
||||
ds.last_ts = gs.last_ts;
|
||||
ds.open_min = gs.open_min;
|
||||
ds.open_max = gs.open_max;
|
||||
ds.close_min = gs.close_min;
|
||||
ds.close_max = gs.close_max;
|
||||
ds.count = gs.count;
|
||||
out_stats.push_back(ds);
|
||||
}
|
||||
|
||||
|
||||
@@ -3,6 +3,8 @@
|
||||
#include "record.hpp"
|
||||
#include <vector>
|
||||
|
||||
bool gpu_is_available();
|
||||
|
||||
// Типы функций из GPU плагина
|
||||
using gpu_is_available_fn = int (*)();
|
||||
|
||||
@@ -18,13 +20,12 @@ struct GpuRecord {
|
||||
|
||||
struct GpuDayStats {
|
||||
long long day;
|
||||
double low;
|
||||
double high;
|
||||
double open;
|
||||
double close;
|
||||
double avg;
|
||||
double first_ts;
|
||||
double last_ts;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
long long count;
|
||||
};
|
||||
|
||||
using gpu_aggregate_days_fn = int (*)(
|
||||
|
||||
@@ -23,13 +23,12 @@ struct GpuRecord {
|
||||
|
||||
struct GpuDayStats {
|
||||
long long day;
|
||||
double low;
|
||||
double high;
|
||||
double open;
|
||||
double close;
|
||||
double avg;
|
||||
double first_ts;
|
||||
double last_ts;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
long long count;
|
||||
};
|
||||
|
||||
extern "C" int gpu_is_available() {
|
||||
@@ -63,32 +62,30 @@ __global__ void aggregate_kernel(
|
||||
|
||||
GpuDayStats stats;
|
||||
stats.day = day_indices[d];
|
||||
stats.low = DBL_MAX;
|
||||
stats.high = -DBL_MAX;
|
||||
stats.first_ts = DBL_MAX;
|
||||
stats.last_ts = -DBL_MAX;
|
||||
stats.open = 0;
|
||||
stats.close = 0;
|
||||
stats.open_min = DBL_MAX;
|
||||
stats.open_max = -DBL_MAX;
|
||||
stats.close_min = DBL_MAX;
|
||||
stats.close_max = -DBL_MAX;
|
||||
stats.count = count;
|
||||
|
||||
double avg_sum = 0.0;
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
const GpuRecord& r = records[offset + i];
|
||||
|
||||
// min/max
|
||||
if (r.low < stats.low) stats.low = r.low;
|
||||
if (r.high > stats.high) stats.high = r.high;
|
||||
// Accumulate avg = (low + high) / 2
|
||||
avg_sum += (r.low + r.high) / 2.0;
|
||||
|
||||
// first/last по timestamp
|
||||
if (r.timestamp < stats.first_ts) {
|
||||
stats.first_ts = r.timestamp;
|
||||
stats.open = r.open;
|
||||
}
|
||||
if (r.timestamp > stats.last_ts) {
|
||||
stats.last_ts = r.timestamp;
|
||||
stats.close = r.close;
|
||||
}
|
||||
// min/max Open
|
||||
if (r.open < stats.open_min) stats.open_min = r.open;
|
||||
if (r.open > stats.open_max) stats.open_max = r.open;
|
||||
|
||||
// min/max Close
|
||||
if (r.close < stats.close_min) stats.close_min = r.close;
|
||||
if (r.close > stats.close_max) stats.close_max = r.close;
|
||||
}
|
||||
|
||||
stats.avg = (stats.low + stats.high) / 2.0;
|
||||
stats.avg = avg_sum / static_cast<double>(count);
|
||||
out_stats[d] = stats;
|
||||
}
|
||||
|
||||
|
||||
@@ -28,13 +28,17 @@ std::vector<Interval> find_intervals(const std::vector<DayStats>& days, double t
|
||||
interval.end_avg = price_now;
|
||||
interval.change = change;
|
||||
|
||||
// Находим min(Open) и max(Close) в интервале
|
||||
interval.min_open = days[start_idx].open;
|
||||
interval.max_close = days[start_idx].close;
|
||||
// Находим min/max Open и Close в интервале
|
||||
interval.open_min = days[start_idx].open_min;
|
||||
interval.open_max = days[start_idx].open_max;
|
||||
interval.close_min = days[start_idx].close_min;
|
||||
interval.close_max = days[start_idx].close_max;
|
||||
|
||||
for (size_t j = start_idx; j <= i; j++) {
|
||||
interval.min_open = std::min(interval.min_open, days[j].open);
|
||||
interval.max_close = std::max(interval.max_close, days[j].close);
|
||||
for (size_t j = start_idx + 1; j <= i; j++) {
|
||||
interval.open_min = std::min(interval.open_min, days[j].open_min);
|
||||
interval.open_max = std::max(interval.open_max, days[j].open_max);
|
||||
interval.close_min = std::min(interval.close_min, days[j].close_min);
|
||||
interval.close_max = std::max(interval.close_max, days[j].close_max);
|
||||
}
|
||||
|
||||
intervals.push_back(interval);
|
||||
@@ -68,16 +72,17 @@ void write_intervals(const std::string& filename, const std::vector<Interval>& i
|
||||
std::ofstream out(filename);
|
||||
|
||||
out << std::fixed << std::setprecision(2);
|
||||
out << "start_date,end_date,min_open,max_close,start_avg,end_avg,change\n";
|
||||
out << "start_date,end_date,open_min,open_max,close_min,close_max,start_avg,end_avg,change\n";
|
||||
|
||||
for (const auto& iv : intervals) {
|
||||
out << day_index_to_date(iv.start_day) << ","
|
||||
<< day_index_to_date(iv.end_day) << ","
|
||||
<< iv.min_open << ","
|
||||
<< iv.max_close << ","
|
||||
<< iv.open_min << ","
|
||||
<< iv.open_max << ","
|
||||
<< iv.close_min << ","
|
||||
<< iv.close_max << ","
|
||||
<< iv.start_avg << ","
|
||||
<< iv.end_avg << ","
|
||||
<< std::setprecision(6) << iv.change << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -4,6 +4,19 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
// Интервал с изменением >= threshold
|
||||
struct Interval {
|
||||
DayIndex start_day;
|
||||
DayIndex end_day;
|
||||
double open_min; // минимальный Open в интервале
|
||||
double open_max; // максимальный Open в интервале
|
||||
double close_min; // минимальный Close в интервале
|
||||
double close_max; // максимальный Close в интервале
|
||||
double start_avg;
|
||||
double end_avg;
|
||||
double change;
|
||||
};
|
||||
|
||||
// Вычисление интервалов с изменением >= threshold (по умолчанию 10%)
|
||||
std::vector<Interval> find_intervals(const std::vector<DayStats>& days, double threshold = 0.10);
|
||||
|
||||
@@ -12,4 +25,3 @@ void write_intervals(const std::string& filename, const std::vector<Interval>& i
|
||||
|
||||
// Преобразование DayIndex в строку даты (YYYY-MM-DD)
|
||||
std::string day_index_to_date(DayIndex day);
|
||||
|
||||
|
||||
276
src/main.cpp
276
src/main.cpp
@@ -1,54 +1,12 @@
|
||||
#include <mpi.h>
|
||||
#include <omp.h>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <iomanip>
|
||||
#include <cstdlib>
|
||||
|
||||
#include "csv_loader.hpp"
|
||||
#include "utils.hpp"
|
||||
#include "record.hpp"
|
||||
#include "day_stats.hpp"
|
||||
#include "aggregation.hpp"
|
||||
#include "intervals.hpp"
|
||||
#include "gpu_loader.hpp"
|
||||
|
||||
// Функция: отобрать записи для конкретного ранга
|
||||
std::vector<Record> select_records_for_rank(
|
||||
const std::map<DayIndex, std::vector<Record>>& days,
|
||||
const std::vector<DayIndex>& day_list)
|
||||
{
|
||||
std::vector<Record> out;
|
||||
for (auto d : day_list) {
|
||||
auto it = days.find(d);
|
||||
if (it != days.end()) {
|
||||
const auto& vec = it->second;
|
||||
out.insert(out.end(), vec.begin(), vec.end());
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// Разделить записи на N частей (по дням)
|
||||
std::vector<std::vector<Record>> split_records(const std::vector<Record>& records, int n_parts) {
|
||||
// Группируем по дням
|
||||
std::map<DayIndex, std::vector<Record>> by_day;
|
||||
for (const auto& r : records) {
|
||||
DayIndex day = static_cast<DayIndex>(r.timestamp) / 86400;
|
||||
by_day[day].push_back(r);
|
||||
}
|
||||
|
||||
// Распределяем дни по частям
|
||||
std::vector<std::vector<Record>> parts(n_parts);
|
||||
int i = 0;
|
||||
for (auto& [day, recs] : by_day) {
|
||||
parts[i % n_parts].insert(parts[i % n_parts].end(), recs.begin(), recs.end());
|
||||
i++;
|
||||
}
|
||||
|
||||
return parts;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
MPI_Init(&argc, &argv);
|
||||
@@ -57,225 +15,27 @@ int main(int argc, char** argv) {
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &size);
|
||||
|
||||
// Читаем количество CPU потоков из переменной окружения
|
||||
int num_cpu_threads = 2;
|
||||
const char* env_threads = std::getenv("NUM_CPU_THREADS");
|
||||
if (env_threads) {
|
||||
num_cpu_threads = std::atoi(env_threads);
|
||||
if (num_cpu_threads < 1) num_cpu_threads = 1;
|
||||
}
|
||||
omp_set_num_threads(num_cpu_threads + 1); // +1 для GPU потока если есть
|
||||
// Параллельное чтение данных
|
||||
double read_start = MPI_Wtime();
|
||||
std::vector<Record> records = load_csv_parallel(rank, size);
|
||||
double read_time = MPI_Wtime() - read_start;
|
||||
|
||||
// ====== ЗАГРУЗКА GPU ФУНКЦИЙ ======
|
||||
auto gpu_is_available = load_gpu_is_available();
|
||||
auto gpu_aggregate = load_gpu_aggregate_days();
|
||||
std::cout << "Rank " << rank
|
||||
<< ": read " << records.size() << " records"
|
||||
<< " in " << std::fixed << std::setprecision(3) << read_time << " sec"
|
||||
<< std::endl;
|
||||
|
||||
bool have_gpu = false;
|
||||
if (gpu_is_available && gpu_is_available()) {
|
||||
have_gpu = true;
|
||||
std::cout << "Rank " << rank << ": GPU available + " << num_cpu_threads << " CPU threads" << std::endl;
|
||||
} else {
|
||||
std::cout << "Rank " << rank << ": " << num_cpu_threads << " CPU threads only" << std::endl;
|
||||
}
|
||||
// Агрегация по дням
|
||||
double agg_start = MPI_Wtime();
|
||||
std::vector<DayStats> days = aggregate_days(records);
|
||||
double agg_time = MPI_Wtime() - agg_start;
|
||||
|
||||
std::vector<Record> local_records;
|
||||
|
||||
// ====== ТАЙМЕРЫ ======
|
||||
double time_load_data = 0.0;
|
||||
double time_distribute = 0.0;
|
||||
|
||||
if (rank == 0) {
|
||||
std::cout << "Rank 0 loading CSV..." << std::endl;
|
||||
|
||||
// Таймер загрузки данных
|
||||
double t_load_start = MPI_Wtime();
|
||||
|
||||
// Запускаем из build
|
||||
auto records = load_csv("../data/data.csv");
|
||||
|
||||
auto days = group_by_day(records);
|
||||
auto parts = split_days(days, size);
|
||||
|
||||
time_load_data = MPI_Wtime() - t_load_start;
|
||||
std::cout << "Rank 0: Data loading time: " << std::fixed << std::setprecision(3)
|
||||
<< time_load_data << "s" << std::endl;
|
||||
|
||||
// Таймер рассылки данных
|
||||
double t_distribute_start = MPI_Wtime();
|
||||
|
||||
// Рассылаем данные
|
||||
for (int r = 0; r < size; r++) {
|
||||
auto vec = select_records_for_rank(days, parts[r]);
|
||||
|
||||
if (r == 0) {
|
||||
// себе не отправляем — сразу сохраняем
|
||||
local_records = vec;
|
||||
continue;
|
||||
}
|
||||
|
||||
int count = static_cast<int>(vec.size());
|
||||
MPI_Send(&count, 1, MPI_INT, r, 0, MPI_COMM_WORLD);
|
||||
MPI_Send(vec.data(), count * sizeof(Record), MPI_BYTE, r, 1, MPI_COMM_WORLD);
|
||||
}
|
||||
|
||||
time_distribute = MPI_Wtime() - t_distribute_start;
|
||||
}
|
||||
else {
|
||||
// Таймер получения данных
|
||||
double t_receive_start = MPI_Wtime();
|
||||
|
||||
// Принимает данные
|
||||
int count = 0;
|
||||
MPI_Recv(&count, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
local_records.resize(count);
|
||||
MPI_Recv(local_records.data(), count * sizeof(Record),
|
||||
MPI_BYTE, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
time_distribute = MPI_Wtime() - t_receive_start;
|
||||
}
|
||||
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
|
||||
// Вывод времени рассылки/получения данных
|
||||
std::cout << "Rank " << rank << ": Data distribution time: " << std::fixed
|
||||
<< std::setprecision(3) << time_distribute << "s" << std::endl;
|
||||
|
||||
std::cout << "Rank " << rank << " received "
|
||||
<< local_records.size() << " records" << std::endl;
|
||||
|
||||
// ====== АГРЕГАЦИЯ НА КАЖДОМ УЗЛЕ ======
|
||||
std::vector<DayStats> local_stats;
|
||||
double time_start = omp_get_wtime();
|
||||
|
||||
// Время работы: [0] = GPU (если есть), [1..n] = CPU потоки
|
||||
std::vector<double> worker_times(num_cpu_threads + 1, 0.0);
|
||||
|
||||
if (have_gpu && gpu_aggregate) {
|
||||
// GPU узел: делим на (1 + num_cpu_threads) частей
|
||||
int n_workers = 1 + num_cpu_threads;
|
||||
auto parts = split_records(local_records, n_workers);
|
||||
|
||||
std::vector<std::vector<DayStats>> results(n_workers);
|
||||
std::vector<bool> success(n_workers, true);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
int tid = omp_get_thread_num();
|
||||
if (tid < n_workers) {
|
||||
double t0 = omp_get_wtime();
|
||||
if (tid == 0) {
|
||||
// GPU поток
|
||||
success[0] = aggregate_days_gpu(parts[0], results[0], gpu_aggregate);
|
||||
} else {
|
||||
// CPU потоки
|
||||
results[tid] = aggregate_days(parts[tid]);
|
||||
}
|
||||
worker_times[tid] = omp_get_wtime() - t0;
|
||||
}
|
||||
}
|
||||
|
||||
// Объединяем результаты
|
||||
for (int i = 0; i < n_workers; i++) {
|
||||
if (i == 0 && !success[0]) {
|
||||
// GPU failed - обработаем на CPU
|
||||
std::cout << "Rank " << rank << ": GPU failed, processing on CPU" << std::endl;
|
||||
double t0 = omp_get_wtime();
|
||||
results[0] = aggregate_days(parts[0]);
|
||||
worker_times[0] = omp_get_wtime() - t0;
|
||||
}
|
||||
local_stats.insert(local_stats.end(), results[i].begin(), results[i].end());
|
||||
}
|
||||
|
||||
} else {
|
||||
// CPU-only узел
|
||||
auto parts = split_records(local_records, num_cpu_threads);
|
||||
std::vector<std::vector<DayStats>> results(num_cpu_threads);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
int tid = omp_get_thread_num();
|
||||
if (tid < num_cpu_threads) {
|
||||
double t0 = omp_get_wtime();
|
||||
results[tid] = aggregate_days(parts[tid]);
|
||||
worker_times[tid + 1] = omp_get_wtime() - t0; // +1 т.к. [0] для GPU
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_cpu_threads; i++) {
|
||||
local_stats.insert(local_stats.end(), results[i].begin(), results[i].end());
|
||||
}
|
||||
}
|
||||
|
||||
double time_total = omp_get_wtime() - time_start;
|
||||
|
||||
// Вывод времени
|
||||
std::cout << std::fixed << std::setprecision(3);
|
||||
std::cout << "Rank " << rank << " aggregated " << local_stats.size() << " days in "
|
||||
<< time_total << "s (";
|
||||
if (have_gpu) {
|
||||
std::cout << "GPU: " << worker_times[0] << "s, ";
|
||||
}
|
||||
for (int i = 0; i < num_cpu_threads; i++) {
|
||||
int idx = have_gpu ? (i + 1) : (i + 1);
|
||||
std::cout << "CPU" << i << ": " << worker_times[idx] << "s";
|
||||
if (i < num_cpu_threads - 1) std::cout << ", ";
|
||||
}
|
||||
std::cout << ")" << std::endl;
|
||||
|
||||
// ====== СБОР АГРЕГИРОВАННЫХ ДАННЫХ НА RANK 0 ======
|
||||
std::vector<DayStats> all_stats;
|
||||
|
||||
if (rank == 0) {
|
||||
// Добавляем свои данные
|
||||
all_stats.insert(all_stats.end(), local_stats.begin(), local_stats.end());
|
||||
|
||||
// Получаем данные от других узлов
|
||||
for (int r = 1; r < size; r++) {
|
||||
int count = 0;
|
||||
MPI_Recv(&count, 1, MPI_INT, r, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
std::vector<DayStats> remote_stats(count);
|
||||
MPI_Recv(remote_stats.data(), count * sizeof(DayStats),
|
||||
MPI_BYTE, r, 3, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
all_stats.insert(all_stats.end(), remote_stats.begin(), remote_stats.end());
|
||||
}
|
||||
} else {
|
||||
// Отправляем свои агрегированные данные на rank 0
|
||||
int count = static_cast<int>(local_stats.size());
|
||||
MPI_Send(&count, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);
|
||||
MPI_Send(local_stats.data(), count * sizeof(DayStats), MPI_BYTE, 0, 3, MPI_COMM_WORLD);
|
||||
}
|
||||
|
||||
// ====== ВЫЧИСЛЕНИЕ ИНТЕРВАЛОВ НА RANK 0 ======
|
||||
if (rank == 0) {
|
||||
std::cout << "Rank 0: merging " << all_stats.size() << " day stats..." << std::endl;
|
||||
|
||||
// Объединяем и сортируем
|
||||
auto merged_stats = merge_day_stats(all_stats);
|
||||
std::cout << "Rank 0: total " << merged_stats.size() << " unique days" << std::endl;
|
||||
|
||||
// Вычисляем интервалы
|
||||
auto intervals = find_intervals(merged_stats, 0.10);
|
||||
std::cout << "Found " << intervals.size() << " intervals with >=10% change" << std::endl;
|
||||
|
||||
// Записываем результат
|
||||
write_intervals("../result.csv", intervals);
|
||||
std::cout << "Results written to result.csv" << std::endl;
|
||||
|
||||
// Выводим первые несколько интервалов
|
||||
std::cout << "\nFirst 5 intervals:\n";
|
||||
std::cout << "start_date,end_date,min_open,max_close,change\n";
|
||||
for (size_t i = 0; i < std::min(intervals.size(), size_t(5)); i++) {
|
||||
const auto& iv = intervals[i];
|
||||
std::cout << day_index_to_date(iv.start_day) << ","
|
||||
<< day_index_to_date(iv.end_day) << ","
|
||||
<< iv.min_open << ","
|
||||
<< iv.max_close << ","
|
||||
<< iv.change << "\n";
|
||||
}
|
||||
}
|
||||
std::cout << "Rank " << rank
|
||||
<< ": aggregated " << days.size() << " days"
|
||||
<< " [" << (days.empty() ? 0 : days.front().day)
|
||||
<< ".." << (days.empty() ? 0 : days.back().day) << "]"
|
||||
<< " in " << std::fixed << std::setprecision(3) << agg_time << " sec"
|
||||
<< std::endl;
|
||||
|
||||
MPI_Finalize();
|
||||
return 0;
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
#include "utils.hpp"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
#include <numeric>
|
||||
|
||||
std::map<DayIndex, std::vector<Record>> group_by_day(const std::vector<Record>& recs) {
|
||||
std::map<DayIndex, std::vector<Record>> days;
|
||||
@@ -23,3 +27,88 @@ std::vector<std::vector<DayIndex>> split_days(const std::map<DayIndex, std::vect
|
||||
return out;
|
||||
}
|
||||
|
||||
int get_num_cpu_threads() {
|
||||
const char* env_threads = std::getenv("NUM_CPU_THREADS");
|
||||
int num_cpu_threads = 1;
|
||||
if (env_threads) {
|
||||
num_cpu_threads = std::atoi(env_threads);
|
||||
if (num_cpu_threads < 1) num_cpu_threads = 1;
|
||||
}
|
||||
return num_cpu_threads;
|
||||
}
|
||||
|
||||
std::string get_env(const char* name) {
|
||||
const char* env = std::getenv(name);
|
||||
if (!env) {
|
||||
throw std::runtime_error(std::string("Environment variable not set: ") + name);
|
||||
}
|
||||
return std::string(env);
|
||||
}
|
||||
|
||||
std::string get_data_path() {
|
||||
return get_env("DATA_PATH");
|
||||
}
|
||||
|
||||
std::vector<int> get_data_read_shares() {
|
||||
std::vector<int> shares;
|
||||
std::stringstream ss(get_env("DATA_READ_SHARES"));
|
||||
std::string item;
|
||||
while (std::getline(ss, item, ',')) {
|
||||
shares.push_back(std::stoi(item));
|
||||
}
|
||||
return shares;
|
||||
}
|
||||
|
||||
int64_t get_read_overlap_bytes() {
|
||||
return std::stoll(get_env("READ_OVERLAP_BYTES"));
|
||||
}
|
||||
|
||||
int64_t get_file_size(const std::string& path) {
|
||||
std::ifstream file(path, std::ios::binary | std::ios::ate);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("Cannot open file: " + path);
|
||||
}
|
||||
return static_cast<int64_t>(file.tellg());
|
||||
}
|
||||
|
||||
ByteRange calculate_byte_range(int rank, int size, int64_t file_size,
|
||||
const std::vector<int>& shares, int64_t overlap_bytes) {
|
||||
// Если shares пустой или не соответствует size, используем равные доли
|
||||
std::vector<int> effective_shares;
|
||||
if (shares.size() == static_cast<size_t>(size)) {
|
||||
effective_shares = shares;
|
||||
} else {
|
||||
effective_shares.assign(size, 1);
|
||||
}
|
||||
|
||||
int total_shares = std::accumulate(effective_shares.begin(), effective_shares.end(), 0);
|
||||
|
||||
// Вычисляем базовые границы для каждого ранка
|
||||
int64_t bytes_per_share = file_size / total_shares;
|
||||
|
||||
int64_t base_start = 0;
|
||||
for (int i = 0; i < rank; i++) {
|
||||
base_start += bytes_per_share * effective_shares[i];
|
||||
}
|
||||
|
||||
int64_t base_end = base_start + bytes_per_share * effective_shares[rank];
|
||||
|
||||
// Применяем overlap
|
||||
ByteRange range;
|
||||
|
||||
if (rank == 0) {
|
||||
// Первый ранк: начинаем с 0, добавляем overlap в конце
|
||||
range.start = 0;
|
||||
range.end = std::min(base_end + overlap_bytes, file_size);
|
||||
} else if (rank == size - 1) {
|
||||
// Последний ранк: вычитаем overlap в начале, читаем до конца файла
|
||||
range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));
|
||||
range.end = file_size;
|
||||
} else {
|
||||
// Промежуточные ранки: overlap с обеих сторон
|
||||
range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));
|
||||
range.end = std::min(base_end + overlap_bytes, file_size);
|
||||
}
|
||||
|
||||
return range;
|
||||
}
|
||||
|
||||
@@ -4,6 +4,29 @@
|
||||
#include "day_stats.hpp"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <cstdlib>
|
||||
#include <cstdint>
|
||||
|
||||
// Группировка записей по дням
|
||||
std::map<DayIndex, std::vector<Record>> group_by_day(const std::vector<Record>& recs);
|
||||
std::vector<std::vector<DayIndex>> split_days(const std::map<DayIndex, std::vector<Record>>& days, int parts);
|
||||
|
||||
// Чтение переменных окружения
|
||||
int get_num_cpu_threads();
|
||||
std::string get_data_path();
|
||||
std::vector<int> get_data_read_shares();
|
||||
int64_t get_read_overlap_bytes();
|
||||
|
||||
// Структура для хранения диапазона байт для чтения
|
||||
struct ByteRange {
|
||||
int64_t start;
|
||||
int64_t end; // exclusive
|
||||
};
|
||||
|
||||
// Вычисляет диапазон байт для конкретного ранка
|
||||
ByteRange calculate_byte_range(int rank, int size, int64_t file_size,
|
||||
const std::vector<int>& shares, int64_t overlap_bytes);
|
||||
|
||||
// Получение размера файла
|
||||
int64_t get_file_size(const std::string& path);
|
||||
|
||||
Reference in New Issue
Block a user