
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение
высшего образования «Санкт-Петербургский политехнический

университет Петра Великого»

Институт компьютерных наук и кибербезопасности

Высшая школа технологий искусственного интеллекта

Направление: 02.03.01 Математика и компьютерные науки

«Архитектура суперкомпьютерных систем»
Отчет по выполению лабораторной работы

Вариант 18

Студент,

группы 5130201/20101 Тищенко А. А.

Преподаватель Чуватов М. В.

« » 2026г.

Санкт-Петербург, 2026

РЕФЕРАТ
ГЕТЕРОГЕННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ, ПАРАЛЛЕЛЬНОЕ ВЫ-

ЧИСЛЕНИЕ, MPI, GPU-ВЫЧИСЛЕНИЯ, OPENMPI, HYPER-V, CUDA, ВРЕМЕН-
НЫЕ РЯДЫ, АГРЕГАЦИЯ ДАННЫХ.

Объектом исследования в текущей работе является гетерогенный вычислитель-
ный кластер, использующий ресурсы GPU и CPU вычислителей. Так как ресурсы
физических суперкомпьютерных систем зачастую не доступны, кластер такого рода
самостоятельно создается с использованием доступных вычислительных ресурсов.
Целью работы является создание, настройка и тестирование высокопроизводитель-
ного вычислительного кластера, способного эффективно выполнять задачи парал-
лельных вычислений с использованием разнородных аппаратных ресурсов.

В разработанной системе воссоздается окружение суперкомпьютерного вычис-
лителя, использующего разные узлы (виртуальные машины) и конфигурацию slurm.

На базе реализованного кластера разработано параллельное приложение, ис-
пользующее технологии CUDA и OpenMPI, выполняющее анализ временных рядов
исторических данных о стоимости Bitcoin с целью выявления интервалов значитель-
ного изменения цены на основе агрегированных дневных статистик.

2

Содержание
ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ 4

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ 5

ВВЕДЕНИЕ 6

ПОСТАНОВКА ЗАДАЧИ 7

1 ОСНОВНАЯ ЧАСТЬ РАБОТЫ 8
1.1 Создание виртуального кластера . 8
1.2 Конфигурация пакетов . 10
1.3 Конфигурация сети . 12
1.4 Конфигурация ресурсов GPU . 16
1.5 Конфигурация NFS . 23
1.6 Конфигурация slurm . 24
1.7 Конфигурация munge . 27
1.8 Конфигурация OpenMPI . 28
1.9 Постановка задачи и прототип решения 29
1.10 Параллельная реализация на CPU . 32
1.11 GPU-ускорение агрегации данных . 35
1.12 Конфигурация через переменные окружения 37
1.13 Структура проекта . 39

ЗАКЛЮЧЕНИЕ 41

Список литературы 42

ПРИЛОЖЕНИЕ А 43

ПРИЛОЖЕНИЕ Б 44

ПРИЛОЖЕНИЕ В 45

ПРИЛОЖЕНИЕ Г 47

ПРИЛОЖЕНИЕ Д 50

ПРИЛОЖЕНИЕ Е 52

ПРИЛОЖЕНИЕ Ж 55

ПРИЛОЖЕНИЕ З 62

ПРИЛОЖЕНИЕ И 68

ПРИЛОЖЕНИЕ К 70

ПРИЛОЖЕНИЕ Л 71

3

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
1. Гетерогенные вычислительные системы — электронные системы, исполь-

зующие различные типы вычислительных блоков. Они позволяют эффективно
решать задачи за счёт использования компонентов с различными архитекту-
рами.

2. GPU (Graphics Processing Unit) — графический процессор, предназначен-
ный для параллельной обработки данных, особенно эффективен для вычисле-
ний с высокой степенью параллелизма.

3. CPU (Central Processing Unit) — центральный процессор общего назначе-
ния, оптимизированный для последовательных вычислений.

4. Hyper-V — технология виртуализации от Microsoft, позволяющая создавать
и управлять виртуальными машинами на Windows.

5. NFS (Network File System) — протокол сетевой файловой системы, позво-
ляющий разделять данные между узлами кластера.

6. MPI (Message Passing Interface) — стандарт взаимодействия между про-
цессами в параллельных вычислительных системах.

7. Slurm — менеджер ресурсов и планировщик задач для кластерных систем.

8. Контейнеризация — технология виртуализации, которая позволяет изоли-
ровать программное обеспечение в контейнерах для повышения переносимости
и устранения конфликтов версий.

9. CUDA (Compute Unified Device Architecture) — программная платфор-
ма от NVIDIA для разработки параллельных приложений на графических про-
цессорах.

10. OpenMPI — высокопроизводительная реализация стандарта MPI, обеспечи-
вающая взаимодействие между процессами в распределённых системах.

11. MUNGE — инструмент аутентификации, используемый для обеспечения без-
опасности в вычислительных кластерах.

12. Rank — идентификатор процесса в системе MPI, используемый для опреде-
ления роли процесса.

13. MPI_Send, MPI_Recv — функции MPI для отправки и получения данных
между процессами.

4

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И
ОБОЗНАЧЕНИЙ

1. GPU — Graphics Processing Unit (графический процессор).

2. CPU — Central Processing Unit (центральный процессор).

3. NFS — Network File System (сетевая файловая система).

4. MPI — Message Passing Interface (интерфейс передачи сообщений).

5. Slurm — Simple Linux Utility for Resource Management (утилита управления
ресурсами для Linux).

6. CUDA — Compute Unified Device Architecture (единая архитектура вычисле-
ний от NVIDIA).

7. OpenMPI — Open Message Passing Interface (реализация интерфейса передачи
сообщений).

8. MUNGE — MUNGE Uid ’N’ Gid Emporium (инструмент аутентификации для
кластеров).

9. HPC — High-Performance Computing (высокопроизводительные вычисления).

10. SSH — Secure Shell (безопасная оболочка).

11. RAM — Random Access Memory (оперативная память).

12. TCP/IP — Transmission Control Protocol/Internet Protocol (протокол управ-
ления передачей/интернет-протокол).

13. OS — Operating System (операционная система).

5

ВВЕДЕНИЕ
Использование графических ускорителей (GPU) наряду с центральными про-

цессорами (CPU) является распространенной практикой в области параллельных
вычислений на гетерогенных платформах. Гетерогенные вычислительные системы
объединяют различные типы вычислительных блоков, что позволяет эффективно
решать задачи, выбирая оптимальный вычислительный ресурс для каждого этапа
обработки данных.

GPU и CPU имеют различную архитектуру и изначально проектировались для
решения разных классов задач. GPU обладает большим количеством простых вы-
числительных ядер, оптимизированных для массово-параллельных операций, в то
время как CPU имеет меньше ядер, но с более сложной логикой и лучшей произ-
водительностью на одно ядро. Совместное использование GPU и CPU осложняется
рядом особенностей: они имеют раздельную память, различные адресные простран-
ства, и для передачи данных требуется явное копирование через системные вызовы.
Однако при правильном распределении задач и росте объёма данных использование
GPU может значительно ускорить вычисления.

Обеспечение взаимодействия между узлами вычислительного кластера осу-
ществляется с помощью Message Passing Interface (MPI) — стандарта передачи сооб-
щений между процессами. Основными реализациями являются Open MPI и MPICH,
которые позволяют процессам синхронизироваться и обмениваться данными.

Для GPU-вычислений используются специализированные технологии, такие как
CUDA (для устройств NVIDIA), ROCm (для устройств AMD) и OpenCL (кроссплат-
форменный стандарт). В данной работе используется CUDA Toolkit и библиотека
CUB для эффективной параллельной обработки данных на GPU.

В качестве операционной системы в вычислительных кластерах традиционно ис-
пользуются Linux-дистрибутивы благодаря их производительности, открытости ис-
ходного кода и широкой поддержке необходимых технологий. В рамках текущей
работы используется Ubuntu Server на виртуальных машинах.

Доступ к физическим суперкомпьютерным системам не всегда возможен, по-
этому для разработки, тестирования и отладки параллельных приложений целесо-
образно создание собственного виртуального кластера. В данной работе использует-
ся технология виртуализации Hyper-V, разработанная Microsoft, которая позволяет
создавать и управлять виртуальными машинами с возможностью проброса GPU-
ресурсов. [2]

Задача анализа временных рядов больших объёмов данных является хорошим
примером для демонстрации эффективности параллельных вычислений на гете-
рогенных системах. Обработка исторических данных о стоимости криптовалюты
Bitcoin включает операции чтения больших файлов, агрегации данных по времен-
ным интервалам и поиска паттернов изменения цены — задачи, которые естествен-
ным образом поддаются распараллеливанию между узлами кластера и ускорению
на GPU.

Целью данной работы является создание виртуального гетерогенного вычисли-
тельного кластера и разработка параллельного приложения для анализа временных
рядов с эффективным использованием ресурсов как CPU, так и GPU узлов.

6

ПОСТАНОВКА ЗАДАЧИ
В рамках лабораторных работ необходимо выполнить следующие задачи:

1. Создание виртуальных машин с разнородными типами вычислительных ре-
сурсов:

• CPU-узлы;

• GPU-узлы.

2. Настройка сети для связи хост-системы и виртуальных узлов;

3. Решение задачи по выбранному варианту:

• Необходимо разработать параллельное приложение, задействующее вы-
числительные ресурсы CPU-узлов и CUDA-узлов, используя механизм
OpenMPI, выполняющее на предоставленном наборе данных следующие
действия. Задача разбита на 2 этапа, которые необходимо выполнить,
используя разнородный тип вычислительных ресурсов;

• Этап 1. Агрегация данных: для временного ряда исторических данных
о стоимости Bitcoin (исходные данные содержат информацию по каж-
дым 10 секундам) необходимо выполнить группировку по дням и для
каждого дня вычислить среднюю цену как математическое ожидание
значений Low и High, а также минимальные и максимальные значения
Open и Close.

• Этап 2. Поиск интервалов изменения цены: на основе дневных агрегиро-
ванных данных необходимо выявить интервалы дат (начиная с началь-
ной даты в наборе данных), в которых средняя дневная цена измени-
лась не менее чем на 10% относительно начала интервала. Для каждого
интервала необходимо вывести начальную и конечную даты, а также
минимальные и максимальные значения Open и Close за все дни внутри
интервала.

Файл с исходными данными доступен в свободном доступе в сети интернет[1].

7

1 ОСНОВНАЯ ЧАСТЬ РАБОТЫ

1.1 Создание виртуального кластера
В рамках лабораторной работы необходимо создать виртуальный вычислитель-

ный кластер, использующий разнородный вид вычислителей: GPU и CPU. В рамках
лабораторной работы необходимо создать виртуальные машины используя нативный
механизм аппаратной виртуализации Windows: Hyper-V.

В качестве общей конфигурации виртуальной машины выбраны следующие па-
раметры:

• Ubuntu Server 22.04.05 LTS;

• выделенное ОЗУ: 4096 MB;

• число виртуальных процессоров: 2;

• имя виртуальной машины: "tishcpuX "tishgpuX"(X - номер узла).

Создание виртуальной машины
Для создания виртуальной машины (узла) для будущего кластера, необходимо

выполнить следующие шаги:

1. Открыть "Диспетчер Hyper-V".

2. Открыть меню для сервера (В текущей работе сервер: XSPMAIN).

3. Выбрать "Создать"→ "Виртуальная машина...". Для мастера создания вир-
туальной машины выбрать следующие параметры:

(a) "Укажите имя и местанохождение"

• Имя: "tishcpu1";
• Сохранить виртуальную машину: V:∖ Virtual machines.

(b) "Укажите поколение"

• Выбрать "Поколение 2" (Далее этот параметр поменять невоз-
можно).

(c) "Выделить память":

• "Память, выделяемое при запуске": 4096 МБ;
• "Использовать для этой виртуальной машины динамическую па-

мять": Ставим галочку.

(d) "Настройка сети": пока данный раздел просто пропускается.

(e) "Подключить виртуальный жесткий диск":

• "Имя": tishcpu1.vhdx;
• "Расположение": V:∖Virtual machines∖Virtual Hard Disks∖;
• "Размер": 100 ГБ.

(f) "Параметры установки":

8

• "Установить операционную систему из загрузочного образа": вы-
бираем путь к *.iso файлу образа ОС.

После создания виртуальной машины необходимо настроить параметры:

1. В списке виртуальных машин в контекстном меню выбрать "Параметры...".

2. Далее необходимо настроить следующие параметры:

• "Процессор"→"Число виртуальных процессоров": 2;

• "Безопасность"→"Включить безопасную загрузку": Не ставим галочку;

• "SCSI-контроллер": DVD-дисковод;

• "Сетевой адаптер"→"Виртуальный коммутатор": Default Switch;

• "Автоматическое действие при запуске": Ничего;

• "Память"→"Включить динамическую память": Не ставим галочку.

3. Нажать "Применить"→"Ок".

Для установки ОС необходимо запустить созданную ранее виртуальную машину.
Для этого необходимо через консоль диспетчера Hyper-V и запустить ее:

Установка ОС

При установке ОС выполняются следующие шаги:

1. Выбор языка: "English".

2. Для раскладки выбираем предлагаемую английскую раскладку.

3. Тип установки: "Ubuntu Server".

4. Настройки сети пока не трогаем.

5. Настройки пространства памяти:

(a) Выбираем опцию: "Custom Storage Layout".

(b) Для нашего свободного пространства: заводим swap и основное про-
странство памяти. (Размеры 50 и 4 ГБ)

6. Настраиваем параметры профиля системы:

• "Your name": имя (например: Arity);

• "Your server’s name": tishcpu1 (как у виртуальной машины);

• "Pick a username": arity;

• Пароль выбирается на свое усмотрение.

9

Создание пользователя root
При создании виртуальной машины, не был сконфигурирован пользователь root.

Для его создания необходимо выполнить следующие команды:
1 aritytishcpu1:~$ sudo su -
2 root@tishcpu1:~# passwd
3 # Конфигурация пароля для пользователя root

1.2 Конфигурация пакетов
В рамках лабораторной работы необходимо установить следующие пакеты:

• libopenmpi3 - пакет для библиотеки Open MPI;

• slurmd - пакет для управляющего задачами демона;

• openssh-client - клиент OpenSSH;

• openssh-server - сервер OpenSSH.

Для этого необходимо выполнить следующие команды:
1 aritytishcpu1:~$ sudo apt update
2 aritytishcpu1:~$ sudo apt upgrade
3 aritytishcpu1:~$ sudo apt install libopenmpi3
4 aritytishcpu1:~$ sudo apt install slurmd
5 aritytishcpu1:~$ sudo apt install openssh-client
6 aritytishcpu1:~$ sudo apt install openssh-server
7 aritytishcpu1:~$ sudo apt clean

[3]

1. apt update - обновляет локальный индекс пакетов в системе, скачивая ак-
туальную информацию о доступных пакетах из репозиториев, указанных в
файлах /etc/apt/sources.list и /etc/apt/sources.list.d/. Это нужно для
того, чтобы ОС знала о новых версиях пакетов и их зависимостях.

2. apt upgrade - обновляет установленные пакеты в системе. Предварительно
рекомендуется обновить локальные индексы пакетов в системе.

3. apt install <name> - устанавливает в системе пакет с именем <name>.

4. apt clean - удаляет все загруженные архивы пакетов из кеша APT, освобож-
дая место на диске.

Настройка сети на виртуальной машине
Для настройки сети на виртуальных машинах необходимо настроить следующие

файлы:

1. /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg - отключение управ-
ления сетевыми настройками через cloud-init, чтобы использовать другие спо-
собы конфигурации сети на системе.

10

2. /etc/netplan/50-cloud-init.yaml - используется для конфигурации сетевых
настроек в системе через cloud-init, и обычно генерируется автоматически в
облачных окружениях для настройки сети при запуске. Однако при настройке
файла .../99-disable-network-config.cfg можно самостоятельно настро-
ить сетевые параметры так, чтобы система не генерировала файл автоматиче-
ски.

Конфигурация netplan:

1 root@tishgpu1:/home/arity# cat /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg
2 network: {config: disabled}

Содержимое файла /etc/netplan/50-cloud-init.yaml:

1 aritytishcpu1:~$ sudo vim /etc/netplan/50-cloud-init.yaml
2 # This file is generated from information provided by the datasource. Changes
3 # to it will not persist across an instance reboot. To disable cloud-init’s
4 # network configuration capabilities, write a file
5 # /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg with the following:
6 # network: {config: disabled}
7 network:
8 ethernets:
9 eth0:

10 addresses:
11 - 10.200.166.125/24
12 nameservers:
13 addresses:
14 - 8.8.8.8
15 search:
16 - tish
17 routes:
18 - to: default
19 via: 10.200.166.254
20 version: 2

1. Интерфейс eth0:

• addresses: [10.200.166.125/24]: Интерфейсу eth0 присваивается IP-
адрес 10.200.166.125 с маской подсети 255.255.255.0 (CIDR /24).

• routes:

– Указывает маршрут по умолчанию (default route), который на-
правляет весь остальной трафик через шлюз 10.200.166.254.

• nameservers:

– Настраиваются DNS-серверы: 8.8.8.8 (это публичные DNS от
Google);

– Указываем tish для параметра search.

2. Версия netplan:

• version: 2: Указывает, что используется вторая версия формата
Netplan.

11

1.3 Конфигурация сети
Для взаимодействия с виртуальными машинами с помощью хост-узла, необхо-

димо пробросить порты на настроенные ранее адреса. Для этого необходимо восполь-
зоваться следующими PowerShell Cmdlet’ами:

1. New-VMSwitch.

2. New-NetIPAddress.

3. New-NetNat.

4. Add-NetNatStaticMapping.

New-VMSwitch
New-VMSwitch - Создает новый виртуальный сетевой адаптер для виртуальных

машин.
Принимаемые параметры:

• SwitchName - алиас для Name. Уточняет имя виртуального сетевого адапте-
ра. Обязательный параметр; SwitchType - Уточняет тип создаваемого адап-
тера. Доступные значения для типа коммутатора — Internal (внутренний) и
Private (частный). Чтобы создать External (внешний) виртуальный комму-
татор, нужно указать либо параметр NetAdapterInterfaceDescription, либо
NetAdapterName, что автоматически установит тип коммутатора как External.
Internal и Private — это типы сетевых адаптеров, которые могут быть ис-
пользованы для настройки виртуальных машин в Hyper-V:

– Internal - позволяет виртуальной машине обмениваться данными с хо-
стовой машиной и другими виртуальными машинами на том же хосте;

– External - позволяет виртуальной машине общаться только с другими
виртуальными машинами, но не имеет доступа к хосту или внешней
сети;

[4]

Создание виртуального сетевого адаптера в PowerShell:
1 PS C:\Windows\system32> New-VMSwitch -SwitchName "TishNet" -SwitchType Internal

New-NetIPAddress
New-NetIPAddress - Создает новый IP-адрес и привязывает его к указанному

сетевому интерфейсу.
Принимаемые параметры:

• InterfaceAlias - Указывает имя сетевого интерфейса, к которому будет при-
вязан новый IP-адрес. Обязательный параметр;

• IPAddress - Указывает IP-адрес, который нужно настроить. Обязательный
параметр;

12

• PrefixLength - Указывает длину префикса подсети для IP-адреса. Например,
для маски подсети 255.255.255.0 длина префикса равна 24. Обязательный
параметр;

• DefaultGateway - Указывает адрес шлюза по умолчанию, который будет ис-
пользоваться для указанного IP-адреса. Необязательный параметр.

Пример настройки нового IP-адреса в PowerShell:
1 PS C:\Windows\system32> New-NetIPAddress -InterfaceAlias "vEthernet (TishNet)" -IPAddress 10.200.166.254 -

PrefixLength 24

Параметры:

• InterfaceAlias - Имя интерфейса, например, "vEthernet (TishNet)", к ко-
торому привязывается IP-адрес;

• IPAddress - Указанный IP-адрес (например, 10.200.166.254);

• PrefixLength - Длина префикса подсети, например, 24 для 255.255.255.0;

• DefaultGateway - Адрес шлюза по умолчанию (опционально).

[5]
Для проверки что IP-адресс корректно сконфигурирован можно восполь-

зоваться команд-летом: Get-NetIPAddress -AddressFamily IPv4 -InterfaceAlias
"vEthernet (t1)"

1 PS C:\Windows\system32> Get-NetIPAddress -AddressFamily IPv4 -InterfaceAlias "vEthernet (TishNet)"
2 IPAddress : 10.200.166.254
3 InterfaceIndex : 10
4 InterfaceAlias : vEthernet (TishNet)
5 AddressFamily : IPv4
6 Type : Unicast
7 PrefixLength : 24
8 PrefixOrigin : Manual
9 SuffixOrigin : Manual

10 AddressState : Preferred
11 ValidLifetime :
12 PreferredLifetime :
13 SkipAsSource : False
14 PolicyStore : ActiveStore

New-NetNat
New-NetNat - Создает новый NAT (Network Address Translation) для указанного

интерфейса внутренней сети.
Принимаемые параметры:

• Name - Указывает имя NAT-объекта. Обязательный параметр;

• InternalIPInterfaceAddressPrefix - Указывает адресный префикс внутрен-
ней сети, который будет использоваться для NAT. Обязательный параметр;

• ExternalIPInterfaceAddressPrefix - Указывает адресный префикс внешней
сети. Необязательный параметр;

• Description - Добавляет описание к NAT-объекту. Необязательный параметр.

13

Пример создания NAT в PowerShell:
1 PS C:\Windows\system32> New-NetNat -Name TishNat -InternalIPInterfaceAddressPrefix 10.200.166.0/24

Параметры:

• Name - Имя NAT-объекта, например, TishNat;

• InternalIPInterfaceAddressPrefix - Префикс внутренней сети, например,
10.200.166.0/24.

1 PS C:\Windows\system32> New-NetNat -Name TishNat -InternalIPInterfaceAddressPrefix 10.200.166.0/24
2 Name : TishNat
3 ExternalIPInterfaceAddressPrefix :
4 InternalIPInterfaceAddressPrefix : 10.200.166.0/24
5 IcmpQueryTimeout : 30
6 TcpEstablishedConnectionTimeout : 1800
7 TcpTransientConnectionTimeout : 120
8 TcpFilteringBehavior : AddressDependentFiltering
9 UdpFilteringBehavior : AddressDependentFiltering

10 UdpIdleSessionTimeout : 120
11 UdpInboundRefresh : False
12 Store : Local
13 Active : True

[6]

Add-NetNatStaticMapping
Add-NetNatStaticMapping - Добавляет статическое сопоставление портов между

внешними и внутренними адресами для NAT (Network Address Translation). Это поз-
воляет направлять трафик, поступающий на внешний адрес и порт, к определенному
внутреннему адресу и порту.

Принимаемые параметры:

• NatName - Указывает имя существующего объекта NAT, к которому применя-
ется статическое сопоставление. Обязательный параметр;

• ExternalIPAddress - Указывает внешний IP-адрес, на который поступает
входящий трафик. Для разрешения любых IP-адресов можно использовать
0.0.0.0/0. Обязательный параметр;

• ExternalPort - Указывает порт внешнего IP-адреса, на который будет пере-
направляться трафик. Обязательный параметр;

• InternalIPAddress - Указывает IP-адрес устройства внутри сети, к которому
будет перенаправляться трафик. Обязательный параметр;

• InternalPort - Указывает порт устройства внутри сети, который будет ис-
пользоваться для трафика. Обязательный параметр;

• Protocol - Указывает протокол (например, TCP или UDP), который будет ис-
пользоваться для сопоставления. Обязательный параметр.

1 PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort
22801 -InternalIPAddress 10.200.166.125 -InternalPort 22 -Protocol TCP

14

[7]
1 PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort

22801 -InternalIPAddress 10.200.166.125 -InternalPort 22 -Protocol TCP
2
3
4 StaticMappingID : 0
5 NatName : TishNat
6 Protocol : TCP
7 RemoteExternalIPAddressPrefix : 0.0.0.0/0
8 ExternalIPAddress : 0.0.0.0
9 ExternalPort : 22801

10 InternalIPAddress : 10.200.166.125
11 InternalPort : 22
12 InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}
13 Active : True
14
15
16
17 PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort

22802 -InternalIPAddress 10.200.166.126 -InternalPort 22 -Protocol TCP
18
19
20 StaticMappingID : 1
21 NatName : TishNat
22 Protocol : TCP
23 RemoteExternalIPAddressPrefix : 0.0.0.0/0
24 ExternalIPAddress : 0.0.0.0
25 ExternalPort : 22802
26 InternalIPAddress : 10.200.166.126
27 InternalPort : 22
28 InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}
29 Active : True
30
31
32
33 PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort

22803 -InternalIPAddress 10.200.166.127 -InternalPort 22 -Protocol TCP
34
35
36 StaticMappingID : 4
37 NatName : TishNat
38 Protocol : TCP
39 RemoteExternalIPAddressPrefix : 0.0.0.0/0
40 ExternalIPAddress : 0.0.0.0
41 ExternalPort : 22803
42 InternalIPAddress : 10.200.166.127
43 InternalPort : 22
44 InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}
45 Active : True
46
47
48 PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort

22804 -InternalIPAddress 10.200.166.128 -InternalPort 22 -Protocol TCP
49
50
51 StaticMappingID : 5
52 NatName : TishNat
53 Protocol : TCP
54 RemoteExternalIPAddressPrefix : 0.0.0.0/0
55 ExternalIPAddress : 0.0.0.0
56 ExternalPort : 22804
57 InternalIPAddress : 10.200.166.128
58 InternalPort : 22
59 InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}

15

60 Active : True

Для более быстрой настройки других виртуальных машин, можно скопировать
tishcpu1, а при настройке первой tishgpu1 выполнить копирование в tishgpu2.

В результате создания виртуального кластеры были получены следующие вир-
туальные машины:

• tishcpu1 - "главный"вычислительный узел;

• tishcpu2;

• tishgpu1;

• tishgpu2.

1.4 Конфигурация ресурсов GPU
Для конфигурации ресурсов GPU для узлов, необходимо воспользоваться сле-

дующими PowerShell Cmdlet’ами:

1. Get-VMHostPartitionableGpu.

2. Add-VMGpuPartitionAdapter.

3. Set-VM.

Также необходимо установить драйвера GPU, CUDA-toolkit.

Get-VMHostPartitionableGpu
Get-VMHostPartitionableGpu - Возвращает список GPU, установленных на хо-

сте Hyper-V, которые поддерживают разделение ресурсов (Partitioning). Эти GPU
могут быть разделены и назначены виртуальным машинам для эффективного ис-
пользования.

Принимаемые параметры:

• -CimSession (необязательный) - Позволяет указать удаленную сессию CIM
(Common Information Model) для выполнения команды на другом компьютере.
Если параметр не указан, команда выполняется локально.

• -ThrottleLimit (необязательный) - Ограничивает количество одновременных
операций. Если параметр не указан, используется системное значение по умол-
чанию.

Выходные данные команды включают информацию о GPU, например:

• Name - Имя GPU;

• TotalMemory - Общий объем памяти GPU;

• AvailableMemory - Доступный объем памяти GPU;

• Status - Текущий статус GPU (например, OK).

Пример использования команды:

16

1 PS C:\Windows\system32> Get-VMHostPartitionableGpu

Результат выполнения:
1 PS C:\Windows\system32> Get-VMHostPartitionableGpu
2
3
4 Name : \\?\PCI#VEN_1002&DEV_164E&SUBSYS_D0001458&REV_C5#4&16012499&0&0041#{064092

b3-625e-43bf-
5 9eb5-dc845897dd59}\GPUPARAV
6 ValidPartitionCounts : {32}
7 PartitionCount : 32
8 TotalVRAM : 1000000000
9 AvailableVRAM : 1000000000

10 SupportsIncomingLiveMigration : False
11 MinPartitionVRAM : 0
12 MaxPartitionVRAM : 1000000000
13 OptimalPartitionVRAM : 1000000000
14 TotalEncode : 18446744073709551615
15 AvailableEncode : 18446744073709551615
16 MinPartitionEncode : 0
17 MaxPartitionEncode : 18446744073709551615
18 OptimalPartitionEncode : 18446744073709551615
19 TotalDecode : 1000000000
20 AvailableDecode : 1000000000
21 MinPartitionDecode : 0
22 MaxPartitionDecode : 1000000000
23 OptimalPartitionDecode : 1000000000
24 TotalCompute : 1000000000
25 AvailableCompute : 1000000000
26 MinPartitionCompute : 0
27 MaxPartitionCompute : 1000000000
28 OptimalPartitionCompute : 1000000000
29 CimSession : CimSession: .
30 ComputerName : XSPMAIN
31 IsDeleted : False
32
33 Name : \\?\PCI#VEN_10DE&DEV_2F04&SUBSYS_F3261569&REV_A1#740E0A73882DB04800#{064092

b3-625e-43bf
34 -9eb5-dc845897dd59}\GPUPARAV
35 ValidPartitionCounts : {32}
36 PartitionCount : 32
37 TotalVRAM : 1000000000
38 AvailableVRAM : 1000000000
39 SupportsIncomingLiveMigration : False
40 MinPartitionVRAM : 0
41 MaxPartitionVRAM : 1000000000
42 OptimalPartitionVRAM : 1000000000
43 TotalEncode : 18446744073709551615
44 AvailableEncode : 18446744073709551615
45 MinPartitionEncode : 0
46 MaxPartitionEncode : 18446744073709551615
47 OptimalPartitionEncode : 18446744073709551615
48 TotalDecode : 1000000000
49 AvailableDecode : 1000000000
50 MinPartitionDecode : 0
51 MaxPartitionDecode : 1000000000
52 OptimalPartitionDecode : 1000000000
53 TotalCompute : 1000000000
54 AvailableCompute : 1000000000
55 MinPartitionCompute : 0
56 MaxPartitionCompute : 1000000000
57 OptimalPartitionCompute : 1000000000
58 CimSession : CimSession: .

17

59 ComputerName : XSPMAIN
60 IsDeleted : False

[8] Эта команда является первым шагом в настройке GPU для виртуальных
машин. Она позволяет проверить, какие GPU на хосте поддерживают разделение и
сколько ресурсов доступно для выделения.

CUDA-ядра есть в VEN_10DE&DEV. Это графическое устройство с ядром Nvidia
5070.

Add-VMGpuPartitionAdapter
Add-VMGpuPartitionAdapter - Добавляет адаптер для разделения ресурсов GPU

к указанной виртуальной машине (VM). Этот адаптер позволяет виртуальной ма-
шине использовать определенную часть вычислительных, графических и других ре-
сурсов физического GPU.

Принимаемые параметры:

• -VMName - Указывает имя виртуальной машины, к которой будет добавлен
GPU-адаптер. Обязательный параметр;

• -InstancePath - Указывает путь к конкретному GPU, который будет разделен
для использования виртуальной машиной. Обязательный параметр;

• -MinPartitionVRAM, -MaxPartitionVRAM, -OptimalPartitionVRAM - Устанав-
ливают минимальный, максимальный и оптимальный объем видеопамяти
(VRAM), который будет доступен виртуальной машине;

• -MinPartitionEncode, -MaxPartitionEncode, -OptimalPartitionEncode - Уста-
навливают минимальное, максимальное и оптимальное количество ресурсов
для кодирования видео;

• -MinPartitionDecode, -MaxPartitionDecode, -OptimalPartitionDecode - Уста-
навливают минимальное, максимальное и оптимальное количество ресурсов
для декодирования видео;

• -MinPartitionCompute, -MaxPartitionCompute,
-OptimalPartitionCompute - Устанавливают минимальное, максимальное и
оптимальное количество вычислительных ресурсов (Compute), доступных вир-
туальной машине.

Пример использования:
1 PS C:\Windows\system32> Add-VMGpuPartitionAdapter -VMName tishgpu1 -InstancePath "\\?\PCI#VEN_10DE&

DEV_2F04&SUBSYS_F3261569&REV_A1#740E0A73882DB04800#{064092b3-625e-43bf-9eb5-dc845897dd59}\GPUPARAV" -
MinPartitionVRAM 100000000 -MaxPartitionVRAM 1000000000 -OptimalPartitionVRAM 1000000000 -
MinPartitionCompute 100000000 -MaxPartitionCompute 1000000000 -OptimalPartitionCompute 1000000000

2
3 PS C:\Windows\system32> Get-VMGpuPartitionAdapter -VMName tishgpu1
4
5
6 InstancePath : \\?\PCI#VEN_10DE&DEV_2F04&SUBSYS_F3261569&REV_A1#740E0A73882DB04800#{064092

b3-625e-43bf
7 -9eb5-dc845897dd59}\GPUPARAV
8 SupportsOutgoingLiveMigration : False
9 CurrentPartitionVRAM : 1000000000

10 MinPartitionVRAM : 100000000

18

11 MaxPartitionVRAM : 1000000000
12 OptimalPartitionVRAM : 1000000000
13 CurrentPartitionEncode : 1000000000
14 MinPartitionEncode :
15 MaxPartitionEncode :
16 OptimalPartitionEncode :
17 CurrentPartitionDecode : 1000000000
18 MinPartitionDecode :
19 MaxPartitionDecode :
20 OptimalPartitionDecode :
21 CurrentPartitionCompute : 0
22 MinPartitionCompute : 100000000
23 MaxPartitionCompute : 1000000000
24 OptimalPartitionCompute : 1000000000
25 PartitionId : 0
26 PartitionVfLuid : 050760292
27 Name : Параметры раздела GPU
28 Id : Microsoft:AE124752-47A6-4788-9C91-8DAE6D45A744\5B2FD022-36CF-4FD9-83D7-

D5B60274737E
29 VMId : ae124752-47a6-4788-9c91-8dae6d45a744
30 VMName : tishgpu1
31 VMSnapshotId : 00000000-0000-0000-0000-000000000000
32 VMSnapshotName :
33 CimSession : CimSession: .
34 ComputerName : XSPMAIN
35 IsDeleted : False
36 VMCheckpointId : 00000000-0000-0000-0000-000000000000
37 VMCheckpointName :

Set-VM
Set-VM - Изменяет параметры виртуальной машины (VM), включая настройки

памяти, процессора и других ресурсов.
Принимаемые параметры:

• -VMName - Указывает имя виртуальной машины, для которой изменяются на-
стройки. Обязательный параметр;

• -GuestControlledCacheTypes - Указывает, разрешено ли гостевой операцион-
ной системе управлять типами кэширования. Значение $true включает эту
возможность;

• -LowMemoryMappedIoSpace - Устанавливает объем выделенного адресного про-
странства для низкоуровневого памяти, используемой устройствами, напри-
мер, 3GB;

• -HighMemoryMappedIoSpace - Устанавливает объем выделенного адресного
пространства для высокоуровневого памяти, например, 32GB;

• -ProcessorCount (необязательный) - Позволяет задать количество процессо-
ров, доступных виртуальной машине;

• -DynamicMemory (необязательный) - Разрешает использование динамической
памяти для виртуальной машины.

Пример использования команды:
1 Set-VM -VMName tishgpu1 -GuestControlledCacheTypes $true -LowMemoryMappedIoSpace 3GB -

HighMemoryMappedIoSpace 32GB

19

Команда изменяет настройки виртуальной машины tishgpu1, разрешая госте-
вой ОС управлять типами кэширования и выделяя 3GB для низкоуровневого адрес-
ного пространства и 32GB для высокоуровневого адресного пространства.

[9]

Установка ПО
Для установки драйверов графического устройства необходимо скопировать их

с хост-устройства с помощью scp.
Выполнение копирования драйверов GPU:

1 # Копируем содержимое папки с драйверами с хоста на виртуальную машину через SCP
2 # -r: копирование рекурсивно (включая подкаталоги)
3 # -P 22803: указание порта для подключения (22803)
4 scp -r -P 22803 C:\WINDOWS\System32\DriverStore\FileRepository\nv_dispi.inf_amd64_20ae8f14a487d5db

arity@127.0.0.1:/tmp/
5
6 # Создаем директорию для драйверов в WSL (если еще не существует)
7 root@tishgpu1:/tmp# mkdir -p /usr/lib/wsl/drivers
8
9 # Переходим в созданную директорию

10 root@tishgpu1:/tmp# cd /usr/lib/wsl/drivers
11
12 # Проверяем содержимое директории (на данный момент она пуста)
13 root@tishgpu1:/usr/lib/wsl/drivers# ls
14
15 # Переходим на уровень выше, в директорию WSL
16 root@tishgpu1:/usr/lib/wsl/drivers# cd ..
17
18 # Проверяем содержимое директории /usr/lib/wsl (содержит только папку drivers)
19 root@tishgpu1:/usr/lib/wsl# ls drivers
20
21 # Создаем новую директорию lib в WSL (может быть нужна для других целей)
22 root@tishgpu1:/usr/lib/wsl# mkdir lib
23
24 # Проверяем, что теперь в /usr/lib/wsl есть две папки: drivers и lib
25 root@tishgpu1:/usr/lib/wsl# ls drivers lib
26
27 # Перемещаем скачанную папку драйвера из /tmp в директорию drivers
28 root@tishgpu1:/usr/lib/wsl# mv /tmp/nv_dispi.inf_amd64_20ae8f14a487d5db/ /usr/lib/wsl/drivers/
29
30 # Проверяем содержимое директории /usr/lib/wsl (папка drivers содержит перемещенные данные)
31 root@tishgpu1:/usr/lib/wsl# ls
32 drivers lib
33
34 # Убеждаемся, что в папке drivers теперь находится папка с драйверами
35 root@tishgpu1:/usr/lib/wsl# ls drivers/
36 nv_dispi.inf_amd64_20ae8f14a487d5db
37
38 # Операция завершена, драйверы находятся в правильной директории
39 root@tishgpu1:/usr/lib/wsl#

Конфигурация драйверов на виртуальной машине:
1 # Копируем библиотеку lib из Windows на виртуальную машину через SCP
2 # -r: копирование рекурсивно
3 # -P 22803: указание порта для подключения
4 PS C:\Windows\system32> scp -r -P 22803 C:\Windows\System32\lxss\lib arity@127.0.0.1:/tmp/
5
6 # Перемещаем скопированную библиотеку в директорию WSL
7 root@tishgpu1:/usr/lib/wsl# mv /tmp/lib/ /usr/lib/wsl/
8

20

9 # Проверяем содержимое директории /usr/lib/wsl, чтобы убедиться, что библиотека перемещена
10 root@tishgpu1:/usr/lib/wsl# ls
11 drivers lib
12
13 # Проверяем содержимое директории lib в WSL
14 root@tishgpu1:/usr/lib/wsl# ls lib
15 libcudadebugger.so.1 libd3d12core.so libnvcuvid.so.1 libnvidia-ml.so.1 libnvwgf2umx.so
16 libcuda.so libd3d12.so libnvdxdlkernels.so libnvidia-opticalflow.so nvidia-smi
17 libcuda.so.1 libdxcore.so libnvidia-encode.so libnvidia-opticalflow.so.1
18 libcuda.so.1.1 libnvcuvid.so libnvidia-encode.so.1 libnvoptix.so.1
19
20 # Устанавливаем права доступа на директорию WSL: только чтение и выполнение (555)
21 root@tishgpu1:/usr/lib# chmod -R 555 wsl/
22
23 # Устанавливаем владельцем директории WSL пользователя root и группу root
24 root@tishgpu1:/usr/lib# chown -R root:root wsl/
25
26 # Редактируем файл ld.so.conf.d для добавления пути к библиотекам WSL
27 root@tishgpu1:/usr/lib/wsl/lib# vim /etc/ld.so.conf.d/ld.wsl.conf
28
29 # Добавляем путь к библиотекам в файл ld.wsl.conf
30 /usr/lib/wsl/lib
31
32 # Применяем изменения с помощью ldconfig, чтобы обновить кэш динамических библиотек
33 root@tishgpu1:/usr/lib/wsl/lib# ldconfig
34 /sbin/ldconfig.real: /usr/lib/wsl/lib/libcuda.so.1 is not a symbolic link
35
36 # Редактируем или создаем файл /etc/profile.d/wsl.sh для добавления пути в системный PATH
37 root@tishgpu1:/usr/lib# vim /etc/profile.d/wsl.sh
38
39 # Проверяем содержимое файла wsl.sh, чтобы убедиться в правильности пути
40 root@tishgpu1:/usr/lib/wsl/lib# cat /etc/profile.d/wsl.sh
41 export PATH=$PATH:/usr/lib/wsl/lib
42
43 # Делаем файл wsl.sh исполняемым
44 root@tishgpu1:/usr/lib# chmod +x /etc/profile.d/wsl.sh

Сборка ядра с использованием готового shell скрипта:

1 # Загружаем и выполняем скрипт установки DXGKRNL (DirectX Kernel) через DKMS (Dynamic Kernel Module Support
):

2 # - curl: утилита для загрузки данных из интернета.
3 # -fsSL:
4 # -f: завершить с ошибкой, если произошел сбой HTTP-запроса.
5 # -s: тихий режим, скрывающий прогресс загрузки.
6 # -S: отображение ошибок даже в тихом режиме.
7 # -L: автоматическое следование за перенаправлениями.
8 # https://content.staralt.dev/dxgkrnl-dkms/main/install.sh: URL скрипта установки.
9 # |: передача загруженного содержимого скрипта как ввода следующей команде.

10 # sudo bash -es:
11 # - bash: запускает загруженный скрипт в интерпретаторе команд bash.
12 # - -e: завершает выполнение скрипта при любой ошибке.
13 # - -s: интерпретирует данные, подаваемые через стандартный ввод, как сценарий bash.
14 aritytishgpu1:~$ curl -fsSL https://content.staralt.dev/dxgkrnl-dkms/main/install.sh | sudo bash -es
15
16 Target Kernel Version: 5.15.0-124-generic
17
18 Installing dependencies...

Для проверки корректности работы GPU на виртуальном узле можно восполь-
зоваться утилитами:

• lspci;

21

– Используется для отображения списка PCI-устройств, подключенных к
системе. Ключ -v выводит подробную информацию о каждом устрой-
стве. В данном случае, команда подтверждает наличие GPU, который
использует драйвер dxgkrnl;

• nvidia-smi;

– Утилита для управления и мониторинга графических карт NVIDIA. По-
казывает информацию о версии драйвера, состоянии GPU, использова-
нии памяти, температуре и запущенных процессах. В данном примере
отображается статус GPU NVIDIA GeForce RTX 5070, использование
1543 MiB памяти и базовая загрузка GPU;

1 aritytishgpu1:~$ lspci -v
2 c556:00:00.0 3D controller: Microsoft Corporation Device 008e
3 Physical Slot: 4111917767
4 Flags: bus master, fast devsel, latency 0, NUMA node 0
5 Capabilities: <access denied>
6 Kernel driver in use: dxgkrnl
7 Kernel modules: dxgkrnl
8
9

10 aritytishgpu1:~$ nvidia-smi
11 Sat Jan 3 17:25:15 2026
12 +---+
13 | NVIDIA-SMI 580.102.01 Driver Version: 581.80 CUDA Version: 13.0 |
14 +---+------------------------+----------------------+
15 | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
16 | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
17 | | | MIG M. |
18 |===+========================+======================|
19 | 0 NVIDIA GeForce RTX 5070 On | 00000000:01:00.0 On | N/A |
20 | 0% 57C P0 36W / 250W | 1543MiB / 12227MiB | 6% Default |
21 | | | N/A |
22 +---+------------------------+----------------------+
23
24 +---+
25 | Processes: |
26 | GPU GI CI PID Type Process name GPU Memory |
27 | ID ID Usage |
28 |===|
29 | No running processes found |
30 +---+

Для установки библиотеки для работы с CUDA необходимо выполнить следую-
щие команды:

1 # Загружаем публичный ключ репозитория NVIDIA для подписи пакетов.
2 # Важно для обеспечения безопасности и проверки пакетов.
3 aritytishgpu1:~$ sudo apt-key adv --fetch-keys https://developer.download.
4 nvidia.com
5 /compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
6
7 # Внимание: apt-key устарел. Рекомендуется использовать новый метод управления ключами через директорию

trusted.gpg.d.
8 # Ключ успешно импортирован:
9 # "cudatools <cudatools@nvidia.com>"

10
11 # Добавляем репозиторий CUDA в список источников пакетов.
12 # Это позволяет получать доступ к последним версиям инструментов CUDA.

22

13 aritytishgpu1:~$ sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/
14 cuda/repos/ubuntu2204/x86_64/ /"
15
16 # Указанный репозиторий добавлен в файл /etc/apt/sources.list.d.
17 # Обновляем список пакетов для загрузки метаданных из нового репозитория.
18 # Получаем пакеты из репозитория NVIDIA и стандартных репозиториев Ubuntu.
19 # Замечание: ключ репозитория сохранëн в устаревшем формате, как указано в предупреждении.
20
21 # Устанавливаем пакет CUDA Toolkit версии 12.
22 # Этот пакет включает библиотеки, компиляторы и утилиты для разработки с использованием GPU.
23 aritytishgpu1:~$ sudo apt install cuda-toolkit-12
24
25 # Создаëм скрипт окружения для автоматической настройки переменных PATH, CUDA_HOME и LD_LIBRARY_PATH.
26 aritytishgpu1:/usr/local/cuda/bin$ sudo touch /etc/profile.d/cuda.sh
27
28 # Редактируем файл cuda.sh для добавления переменных окружения.
29 # Эти переменные позволяют системе находить бинарные файлы и библиотеки CUDA.
30 aritytishgpu1:/usr/local/cuda$ sudo vim /etc/profile.d/cuda.sh
31
32 # Проверяем содержимое файла, чтобы убедиться в правильной настройке переменных.
33 aritytishgpu1:/usr/local/cuda$ cat /etc/profile.d/cuda.sh
34 export PATH=$PATH:/usr/local/cuda/bin
35 export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
36 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
37
38 # Делаем файл cuda.sh исполняемым, чтобы переменные окружения применялись при входе в систему.
39 aritytishgpu1:~$ sudo chmod +x /etc/profile.d/cuda.sh

1.5 Конфигурация NFS
NFS (Network File System) — это сетевой протокол, разработанный для предо-

ставления общего доступа к файловым системам через сеть. С помощью NFS пользо-
ватели или приложения могут работать с файлами, расположенными на удалённом
сервере, так, как будто они находятся на локальной машине. [10]

Для корректной работы исполняемых и других файлов на виртуальных маши-
нах, вместо постоянного копирования можно воспользоваться протоколом сетевого
доступа к файловой системе одной из машин. Для этого можно настроить NFS на
одном из узлов (например tishgpu1) и далее выполнить монтирование в каталоги
других виртуальных машин.

Настройка etc/hosts
Для удобной работы в среде виртуальных машин можно задать доменные имена

в файле etc/hosts. Для этого его необходимо отредактировать на каждой виртуаль-
ной машине.

Формат создания доменного имени:
1 # IP-адрес, Основное имя хоста, Полное доменное имя
2 10.200.166.126 tishcpu2 tishcpu2.tish

Пример файла etc/hosts:
1 aritytishcpu1:~$ cat /etc/hosts
2 127.0.0.1 localhost
3 10.200.166.125 tishcpu1 tishcpu1.tish
4 10.200.166.126 tishcpu2 tishcpu2.tish
5 10.200.166.127 tishgpu1 tishgpu1.tish

23

6 10.200.166.128 tishgpu2 tishgpu2.tish
7
8 # The following lines are desirable for IPv6 capable hosts
9 ::1 ip6-localhost ip6-loopback

10 fe00::0 ip6-localnet
11 ff00::0 ip6-mcastprefix
12 ff02::1 ip6-allnodes

1 # Содержимое файла /etc/exports на tishcpu1
2 # Экспортируем директорию /home/arity для общего доступа через NFS
3 # *: доступ разрешëн для всех хостов
4 # rw: разрешение на чтение и запись
5 # nohide: дочерние файловые системы видны
6 # no_subtree_check: отключает проверку вложенных поддеревьев для повышения производительности
7 aritytishcpu1:~$ cat /etc/exports
8 /home/arity *(rw,nohide,no_subtree_check)
9

10 # Применяем изменения в настройках NFS (перезапускаем экспорт)
11 # -a: экспорт всех записей
12 # -r: перезапускает экспорт
13 # -v: подробный вывод
14 aritytishcpu1:~$ sudo exportfs -arv
15 exporting *:/home/arity
16
17 # Устанавливаем клиент NFS на tishcpu2
18 sudo apt install nfs-common
19
20 # Удаляем старую папку (если существует) для монтирования
21 aritytishcpu2:/mnt$ sudo rmdir share
22
23 # Проверяем содержимое директории /mnt
24 aritytishcpu2:/mnt$ ls
25
26 # Создаëм новую папку share для монтирования NFS
27 aritytishcpu2:/mnt$ sudo mkdir share
28
29 # Монтируем экспортированную директорию /home/arity с tishgpu1 в локальную папку /mnt/share
30 # -t nfs: указывает тип файловой системы (NFS)
31 aritytishcpu2:/mnt$ sudo mount -t nfs tishgpu1:/home/arity /mnt/share
32
33 # Проверяем содержимое смонтированной директории
34 aritytishgpu2:/mnt$ ls share/
35 hello.txt install.sh
36
37 # Читаем файл hello.txt из смонтированной директории
38 aritytishgpu2:/mnt$ cat share/hello.txt
39 happy hacking
40 aritytishgpu2:/mnt$

1.6 Конфигурация slurm
SLURM (Simple Linux Utility for Resource Management) — это открытая система

управления задачами и ресурсами в кластерах. Она используется для распределения
вычислительных задач между узлами и управления их выполнением.

С помощью conf.html файла конфигурации необходимо сформировать конфи-
гурацию в /etc/slurm/slurm.conf.

• ClusterName - Имя кластера SLURM (например, "tish"), используется для
идентификации кластера.

24

• SlurmctldHost - Имя хоста, на котором работает демон управления SLURM
(slurmctld), в данном случае это tishcpu1.

• MpiDefault - Указывает стандартную реализацию MPI (по умолчанию none,
т.е. MPI не используется).

• ProctrackType - Метод отслеживания процессов; proctrack/cgroup означает
использование cgroup для изоляции процессов.

• ReturnToService - Указывает, должен ли узел автоматически возвращаться
в работу после восстановления (1 - включено).

• SlurmctldPidFile - Путь к файлу PID для демона slurmctld.

• SlurmdPidFile - Путь к файлу PID для демона slurmd.

• SlurmdSpoolDir - Директория, где slurmd хранит временные файлы и ин-
формацию о заданиях.

• SlurmUser - Имя пользователя, под которым запускаются процессы SLURM
(обычно slurm).

• StateSaveLocation - Директория для сохранения состояния кластера, необ-
ходима для восстановления после перезапуска.

• SwitchType - Тип сетевого коммутатора; switch/none указывает, что комму-
татор не используется.

• TaskPlugin - Плагин для управления задачами; task/affinity позволяет за-
давать привязку задач к CPU.

• SchedulerType - Тип планировщика задач; sched/backfill разрешает задачи
меньшего размера выполняться параллельно с крупными.

• SelectType - Механизм выбора ресурсов;

• SelectTypeParameters - Параметры выбора ресурсов; CR_Core указывает
распределение по ядрам.

• JobAcctGatherType - Метод сбора данных о выполнении задач;

• SlurmctldLogFile - Путь к файлу журнала для демона slurmctld.

• SlurmdLogFile - Путь к файлу журнала для демона slurmd.

• NodeName - Описание вычислительных узлов; описывает 4 узла с 2 CPU на
каждом.

• PartitionName - Имя раздела (partition), включающего все узлы (Nodes=ALL);
используется для распределения задач.

• Default - Указывает, что данный раздел является разделом по умолчанию
(YES).

• MaxTime - Максимальное время выполнения задачи; INFINITE означает, что
ограничений нет.

25

• State - Статус узлов или раздела (UP - узлы в рабочем состоянии).

Пример установки конфигурации:

1 aritytishcpu1:~$ sudo apt install slurm-wlm
2
3 aritytishcpu1:~$ nano /etc/slurm/slurm.conf
4 #Указываем:
5
6 # slurm.conf file generated by configurator easy.html.
7 # Put this file on all nodes of your cluster.
8 # See the slurm.conf man page for more information.
9 #

10 ClusterName=tish
11 SlurmctldHost=tishcpu1
12 #
13 #MailProg=/bin/mail
14 #MpiDefault=
15 #MpiParams=ports=#-#
16 ProctrackType=proctrack/cgroup
17 ReturnToService=2
18 SlurmctldPidFile=/var/run/slurmctld.pid
19 #SlurmctldPort=6817
20 SlurmdPidFile=/var/run/slurmd.pid
21 #SlurmdPort=6818
22 SlurmdSpoolDir=/var/spool/slurmd
23 SlurmUser=slurm
24 #SlurmdUser=root
25 StateSaveLocation=/var/spool/slurmctld
26 #SwitchType=
27 TaskPlugin=task/affinity,task/cgroup
28 #
29 #
30 # TIMERS
31 #KillWait=30
32 #MinJobAge=300
33 #SlurmctldTimeout=120
34 #SlurmdTimeout=300
35 #
36 #
37 # SCHEDULING
38 SchedulerType=sched/backfill
39 SelectType=select/cons_tres
40 #
41 #
42 # LOGGING AND ACCOUNTING
43 #AccountingStorageType=
44 #JobAcctGatherFrequency=30
45 #JobAcctGatherType=
46 #SlurmctldDebug=info
47 SlurmctldLogFile=/var/log/slurmctld.log
48 #SlurmdDebug=info
49 SlurmdLogFile=/var/log/slurmd.log
50 #
51 #
52 # COMPUTE NODES
53 NodeName=tishcpu[1-2],tishgpu[1-2] CPUs=2 State=UNKNOWN
54 PartitionName=tishpartition Nodes=ALL Default=YES MaxTime=INFINITE State=UP
55
56 #Копируем этот конфиг в машины tishcpu2, tishgpu1, tishgpu2

26

1.7 Конфигурация munge
MUNGE — это инструмент для аутентификации, который используется для обес-

печения безопасности в кластерах.
Ниже приведены шаги конфигурации ключей munge для конфигурации машин.

1 # Копируем файл ключа MUNGE с узла tishgpu1 на все машины кластера.
2 # Этот файл необходим для аутентификации в кластере.
3
4 root@tishcpu2:/tmp# chown munge:munge ./munge.key
5 # Изменяем владельца и группу файла ключа на пользователя и группу MUNGE.
6 # Это необходимо для корректной работы службы MUNGE.
7
8 root@tishcpu2:/tmp# ls -l
9 # Проверяем содержимое текущей директории, чтобы убедиться, что файл ключа имеет нужные права:

10 # -rw-------: доступ только для владельца.
11
12 root@tishcpu2:/tmp# mv /etc/munge/munge.key /etc/munge/munge_old.key
13 # Переименовываем существующий ключ в ‘munge_old.key‘ для резервного копирования.
14
15 root@tishcpu2:/tmp# mv munge.key /etc/munge/munge.key
16 # Перемещаем новый файл ключа в директорию /etc/munge и задаëм ему правильное имя.
17
18 root@tishcpu2:/etc/munge# ls
19 # Проверяем содержимое директории /etc/munge:
20 # Убедились, что есть два файла: новый ключ (‘munge.key‘) и резервный ключ (‘munge_old.key‘).
21
22 # Переходим на другой узел (tishgpu1), повторяем процесс.
23 aritytishgpu1:/tmp$ su
24 Password:
25 root@tishgpu1:/tmp# mv /etc/munge/munge.key /etc/munge/munge_old.key
26 # Создаëм резервную копию существующего ключа.
27
28 root@tishgpu1:/tmp# chown munge:munge munge.key
29 # Изменяем владельца нового ключа на пользователя MUNGE.
30
31 root@tishgpu1:/tmp# mv /tmp/munge.key /etc/munge/munge.key
32 # Перемещаем новый ключ в директорию /etc/munge.
33
34 # На узле tishgpu2 повторяем процесс.
35 root@tishgpu2:/tmp# chown munge:munge munge.key
36 # Меняем владельца файла ключа.
37
38 root@tishgpu2:/tmp# mv /etc/munge/munge.key /etc/munge/munge_old.key
39 # Резервируем старый ключ.
40
41 root@tishgpu2:/tmp# mv munge.key /etc/munge/munge.key
42 # Перемещаем новый ключ на место старого.
43
44 root@tishgpu2:/tmp# ls -l /etc/munge
45 # Проверяем права и владельца ключей в директории /etc/munge:
46 # Убедились, что оба ключа принадлежат пользователю ‘munge‘ и имеют доступ только для владельца.
47
48 # Вносим изменения в конфигурацию SLURM:
49 # Меняем механизм отслеживания процессов с ‘cgroup‘ на ‘linuxproc‘ в файле конфигурации /etc/slurm/slurm.

conf.
50
51 # Перезапускаем службы, чтобы применить изменения:
52 sudo systemctl restart munge
53 # Перезапускаем службу MUNGE для применения нового ключа.
54
55 sudo systemctl restart slurmd
56 # Перезапускаем демон SLURM для рабочих узлов.
57

27

58 sudo systemctl restart slurmctld
59 # Перезапускаем демон SLURM для управляющего узла.
60
61 sudo systemctl status munge
62 sudo systemctl status slurmd
63 sudo systemctl status slurmctld
64 # Проверяем статус всех служб, чтобы убедиться в их корректной работе.

1.8 Конфигурация OpenMPI
OpenMPI (Open Message Passing Interface) — это высокопроизводительная, гиб-

кая и открытая реализация стандарта MPI (Message Passing Interface). MPI — это
стандарт для взаимодействия между процессами в распределённых и параллельных
вычислительных системах, таких как кластеры и суперкомпьютеры.

Для обмена сообщениями узлы должны обменяться публичными ключами и
каждый имел прямой доступ к друг другу через ssh.

Чтобы произвести обмен ключами необходимо выполнить следующие команды:
1 # Создаëм новую пару SSH-ключей:
2 ssh-keygen
3
4 # Копируем публичный SSH-ключ на удалëнный узел:
5 # - ssh-copy-id: утилита для добавления публичного ключа на удалëнный сервер.
6 # - aritytishcpu1: имя пользователя и адрес узла, куда копируется ключ.
7 # После выполнения этой команды ключ будет добавлен в файл authorized_keys на удалëнном сервере,
8 # что позволит подключаться по SSH без ввода пароля.
9 ssh-copy-id aritytishcpu1

Для установки библиотеки OpenMPI необходимо выполнить следующие пакеты:
1 sudo apt install openmpi-bin # установить на все узлы
2 sudo apt install openmpi-dev # установить на 1 узел где будет разработка приложения

28

1.9 Постановка задачи и прототип решения
Описание задачи

Необходимо разработать параллельное приложение, задействующее вычис-
лительные ресурсы двух CPU-узлов и двух CUDA-узлов, используя механизм
OpenMPI, выполняющее анализ временных рядов исторических данных о стоимо-
сти Bitcoin.

Задача разбита на два этапа:

1. Этап 1. Агрегация данных: для временного ряда исторических данных о
стоимости Bitcoin (исходные данные содержат информацию по каждым 10
секундам) необходимо выполнить группировку по дням и для каждого дня
вычислить среднюю цену как математическое ожидание значений Low и High,
а также минимальные и максимальные значения Open и Close.

2. Этап 2. Поиск интервалов изменения цены: на основе дневных агрегиро-
ванных данных необходимо выявить интервалы дат (начиная с начальной да-
ты в наборе данных), в которых средняя дневная цена изменилась не менее чем
на 10% относительно начала интервала. Для каждого интервала необходимо
вывести начальную и конечную даты, а также минимальные и максимальные
значения Open и Close за все дни внутри интервала.

Описание входных данных
В задаче используется файл в формате CSV с историческими данными о сто-

имости Bitcoin[1]. В качестве разделителя используется запятая. Во входном файле
заданы следующие поля:

1. Timestamp - временная метка Unix в секундах.

2. Open - цена открытия за период.

3. High - максимальная цена за период.

4. Low - минимальная цена за период.

5. Close - цена закрытия за период.

6. Volume - объём торгов (может быть пустым).

Прототип решения на Python
Для отладки алгоритма был создан прототип на языке Python. Код прототипа

представлен ниже:
1 import pandas as pd
2
3 # Загрузка данных
4 df = pd.read_csv("data.csv")
5 df[’Timestamp’] = pd.to_datetime(df[’Timestamp’], unit=’s’, utc=True)
6
7 # Вычисление средней цены
8 df[’Avg’] = (df[’Low’] + df[’High’]) / 2
9

29

10 # Группировка по дням и агрегация
11 df_days = (
12 df.groupby(df["Timestamp"].dt.date)
13 .agg(
14 Avg=("Avg", "mean"),
15 OpenMin=("Open", "min"),
16 OpenMax=("Open", "max"),
17 CloseMin=("Close", "min"),
18 CloseMax=("Close", "max"),
19)
20 .reset_index()
21)
22
23 # Поиск интервалов изменения цены на 10%
24 intervals = []
25 start_idx = 0
26 price_base = df_days.loc[start_idx, "Avg"]
27
28 for i in range(1, len(df_days)):
29 price_now = df_days.loc[i, "Avg"]
30 change = abs(price_now - price_base) / price_base
31
32 if change >= 0.10:
33 interval = df_days.loc[start_idx:i]
34
35 intervals.append({
36 "start_date": df_days.loc[start_idx, "Timestamp"],
37 "end_date": df_days.loc[i, "Timestamp"],
38 "min_open": interval["OpenMin"].min(),
39 "max_open": interval["OpenMax"].max(),
40 "min_close": interval["CloseMin"].min(),
41 "max_close": interval["CloseMax"].max(),
42 "start_avg": price_base,
43 "end_avg": price_now,
44 "change": change,
45 })
46
47 start_idx = i + 1
48 if start_idx >= len(df_days):
49 break
50 price_base = df_days.loc[start_idx, "Avg"]
51
52 df_intervals = pd.DataFrame(intervals)

Увеличение объёма данных

Исходные данные содержат информацию по каждой минуте и имеют размер
около 360 МБ. При тестировании параллельной реализации обработка таких данных
занимала слишком мало времени, что не позволяло достоверно оценить эффектив-
ность параллельных вычислений и преимущества использования GPU.

Для решения этой проблемы был разработан скрипт upsample.py, выполняю-
щий линейную интерполяцию данных. Алгоритм работы скрипта следующий:

1. Для каждой пары соседних записей (𝑡1, 𝑜1, ℎ1, 𝑙1, 𝑐1, 𝑣1) и (𝑡2, 𝑜2, ℎ2, 𝑙2, 𝑐2, 𝑣2) вы-
числяется временной интервал Δ𝑡 = 𝑡2 − 𝑡1.

2. Интервал делится на 𝑛 = Δ𝑡/step равных частей, где step - новый временной
шаг (10 секунд).

30

3. Для каждой промежуточной точки 𝑖 ∈ [0, 𝑛) вычисляются интерполированные
значения с помощью линейной интерполяции:

𝛼 = 𝑖/𝑛

𝑡𝑖 = 𝑡1 + 𝑖 · step
𝑜𝑖 = 𝑜1 + (𝑜2 − 𝑜1) · 𝛼
ℎ𝑖 = ℎ1 + (ℎ2 − ℎ1) · 𝛼
𝑙𝑖 = 𝑙1 + (𝑙2 − 𝑙1) · 𝛼
𝑐𝑖 = 𝑐1 + (𝑐2 − 𝑐1) · 𝛼
𝑣𝑖 = 𝑣1 + (𝑣2 − 𝑣1) · 𝛼

В результате применения интерполяции данные были преобразованы из фор-
мата "каждая минута"в формат "каждые 10 секунд что увеличило объём данных
в 6 раз - с примерно 360 МБ до 2.3 ГБ. Такой объём данных позволяет нагляд-
но продемонстрировать эффективность параллельных вычислений и преимущества
использования GPU-ускорения.

31

1.10 Параллельная реализация на CPU
Проблема последовательной обработки

При профилировании первоначальной реализации было выявлено, что операция
чтения и парсинга CSV-файла размером 2.3 ГБ занимает значительную часть вре-
мени выполнения программы. Последовательное чтение такого объёма данных на
одном узле приводило к неэффективному использованию вычислительных ресурсов
кластера, так как остальные узлы простаивали в ожидании данных.

Параллельное чтение с перекрытием
Для решения этой проблемы было реализовано параллельное чтение файла, при

котором каждый MPI-ранк читает только свою часть файла. Алгоритм работает
следующим образом:

1. Вычисление диапазонов байт: размер файла делится на части пропорци-
онально долям, указанным в переменной окружения DATA_READ_SHARES. Для
каждого ранка вычисляется диапазон байт [start, end), который он должен про-
читать.

2. Добавление перекрытия: к каждому диапазону добавляется перекрытие
размером READ_OVERLAP_BYTES (по умолчанию 128 КБ). Это необходимо для
корректной обработки строк CSV, которые могут быть разделены на границах
диапазонов:

startadj = max(0, start − overlap)
endadj = min(file_size, end + overlap)

3. Обработка границ строк:

• Ранк 0 пропускает заголовок CSV (первую строку) и начинает парсинг
со второй строки.

• Ранки 1 . . . 𝑛−1 пропускают неполную строку в начале своего диапазона,
начиная парсинг с первого символа новой строки после \n.

• Ранк 𝑛− 1 (последний) читает до конца файла, остальные ранки закан-
чивают чтение на последнем символе \n перед концом диапазона.

Такой подход обеспечивает равномерное распределение нагрузки по чтению
между узлами кластера и исключает дублирование или потерю данных на грани-
цах диапазонов.

Агрегация данных по периодам
После параллельного чтения каждый ранк имеет свой набор записей Record.

Агрегация выполняется локально на каждом ранке:

1. Записи последовательно обрабатываются, для каждой записи вычисляется ин-
декс периода:

period = ⌊timestamp/AGGREGATION_INTERVAL⌋

32

2. Для каждого периода накапливаются следующие статистики:

• Сумма средних цен:
∑︀

𝑖(𝐿𝑜𝑤𝑖 +𝐻𝑖𝑔ℎ𝑖)/2

• Минимальное и максимальное значение Open: min(𝑂𝑝𝑒𝑛𝑖), max(𝑂𝑝𝑒𝑛𝑖)

• Минимальное и максимальное значение Close: min(𝐶𝑙𝑜𝑠𝑒𝑖), max(𝐶𝑙𝑜𝑠𝑒𝑖)

• Количество записей в периоде: 𝑐𝑜𝑢𝑛𝑡

3. При смене периода статистики сохраняются в структуру PeriodStats, и начи-
нается накопление для следующего периода.

Агрегация может выполняться на CPU (последовательная обработка) или на
GPU (параллельная обработка с использованием CUDA). При недоступности GPU
автоматически выполняется fallback на CPU-версию.

Удаление граничных периодов
Из-за параллельного чтения с перекрытием первый и последний периоды каж-

дого ранка могут содержать неполные данные. Например, если период охватывает
временной интервал [𝑡1, 𝑡2), а ранк прочитал записи только начиная с 𝑡1 + 𝛿, то ста-
тистики для этого периода будут искажены.

Для устранения этой проблемы применяется функция trim_edge_periods:

• Ранк 0 удаляет только последний период (первый период гарантированно пол-
ный, так как чтение начинается с начала файла).

• Ранки 1 . . . 𝑛− 2 удаляют первый и последний периоды.

• Ранк 𝑛− 1 удаляет только первый период (последний период гарантированно
полный, так как чтение идёт до конца файла).

Параллельный поиск интервалов изменения цены
После агрегации каждый ранк имеет список периодов PeriodStats, упорядо-

ченных по времени. Для параллельного поиска интервалов используется следующий
алгоритм:

1. Приём данных от предыдущего ранка: ранк 𝑖 > 0 ожидает от ранка
𝑖−1 информацию о незавершённом интервале. Если предыдущий ранк передал
начало интервала, текущий ранк продолжает его обработку.

2. Локальная обработка периодов: ранк последовательно обходит свои пери-
оды, проверяя условие изменения цены:

change =
|avgcurrent − avgstart|

avgstart
≥ 0.10

Если условие выполнено, интервал завершается и сохраняется в результаты.
Начинается новый интервал.

33

3. Передача данных следующему ранку: если у ранка остался незавершён-
ный интервал (не достигнуто изменение на 10%), информация о начале этого
интервала передаётся ранку 𝑖+ 1 через MPI.

Такой подход обеспечивает корректность параллельного поиска интервалов: ин-
тервалы, пересекающие границы данных между ранками, корректно обрабатываются
через передачу состояния по цепочке.

Сбор результатов
После завершения локальной обработки ранк 0 собирает найденные интервалы

от всех остальных ранков через MPI, сортирует их по времени начала и записывает
в выходной файл result.csv.

34

1.11 GPU-ускорение агрегации данных
Общий алгоритм GPU-агрегации

Агрегация данных на GPU реализована в модуле gpu_plugin.cu и использу-
ет библиотеку CUB (CUDA Unbound) для эффективной параллельной обработки.
Общий алгоритм состоит из следующих шагов:

1. Копирование данных на GPU: массивы timestamp, open, high, low, close
копируются из оперативной памяти CPU в память GPU.

2. Вычисление индексов периодов: для каждой записи параллельно вычис-
ляется индекс периода:

period_id𝑖 = ⌊timestamp𝑖/AGGREGATION_INTERVAL⌋

Используется простое ядро с одномерной сеткой блоков.

3. Run-Length Encoding (RLE): применяется операция RLE из библиотеки
CUB для нахождения уникальных последовательных периодов и подсчёта ко-
личества записей в каждом периоде. На выходе получаем:

• Массив уникальных периодов: [period0, period1, . . . , period𝑛−1]

• Массив длин последовательностей: [count0, count1, . . . , count𝑛−1]

4. Exclusive Scan: применяется префиксная сумма (exclusive scan) к массиву
длин для вычисления смещений начала каждого периода в исходном массиве
данных:

offset𝑖 =
𝑖−1∑︁
𝑗=0

count𝑗

5. Агрегация по периодам: для каждого периода параллельно вычисляются
статистики (среднее значение, минимумы и максимумы). Используется одно
из двух ядер в зависимости от настроек (см. следующий раздел).

6. Копирование результатов обратно на CPU: агрегированные статистики
копируются из памяти GPU обратно в оперативную память CPU.

Два варианта ядер агрегации
Для агрегации по периодам реализовано два варианта CUDA-ядер, оптимизиро-

ванных для разных сценариев использования:
1. Блочное ядро (Block Kernel):
Используется когда USE_BLOCK_KERNEL=1. Оптимизировано для случая, когда в

каждом периоде много записей (большой AGGREGATION_INTERVAL).
Алгоритм работы:

• Один блок потоков обрабатывает один период.

• Потоки внутри блока параллельно обрабатывают записи периода, каждый по-
ток накапливает локальные статистики.

35

• Используется shared memory для промежуточного хранения результатов.

• Атомарные операции (atomicAdd, atomicMin, atomicMax) используются для
объединения локальных результатов потоков.

• Первый поток блока записывает финальный результат в глобальную память.

Преимущества: эффективное использование параллелизма внутри периода, ми-
нимизация обращений к глобальной памяти за счёт shared memory.

2. Простое ядро (Simple Kernel):
Используется когда USE_BLOCK_KERNEL=0. Оптимизировано для случая, когда пе-

риодов много, но в каждом периоде мало записей (малый AGGREGATION_INTERVAL).
Алгоритм работы:

• Один поток обрабатывает один период полностью.

• Поток последовательно обходит все записи своего периода, накапливая стати-
стики.

• Не используется shared memory и атомарные операции.

• Результат сразу записывается в глобальную память.

Преимущества: отсутствие overhead на синхронизацию потоков и атомарные опе-
рации, эффективно при большом количестве независимых периодов.

Выбор ядра:
Выбор между ядрами осуществляется через переменную окружения USE_BLOCK_KERNEL:

• Блочное ядро предпочтительно при агрегации по дням/часам (86400 или 3600
секунд) - много записей в каждом периоде.

• Простое ядро предпочтительно при агрегации по минутам/секундам (60 или
10 секунд) - мало записей в каждом периоде, но много периодов.

36

1.12 Конфигурация через переменные окружения
Все настройки параллельного приложения вынесены в переменные окружения,

которые задаются в SLURM-скрипте run.slurm. Это обеспечивает гибкость настрой-
ки без необходимости перекомпиляции программы.

Описание переменных окружения
• DATA_PATH - полный путь к CSV-файлу с входными данными. Файл дол-

жен быть доступен на всех узлах кластера (рекомендуется использовать об-
щую директорию, например, через NFS).
Пример: /mnt/shared/supercomputers/data/data_10s.csv

• DATA_READ_SHARES - доли данных для каждого ранка при параллель-
ном чтении файла, разделённые запятыми. Позволяет неравномерно распре-
делить нагрузку по чтению, если узлы имеют разную производительность.
Пример: 10,11,13,14 означает, что файл будет разделён на части пропорцио-
нально 10 : 11 : 13 : 14. Если количество значений не совпадает с количеством
ранков, используется равномерное распределение.

• READ_OVERLAP_BYTES - размер перекрытия в байтах при параллель-
ном чтении файла. Необходим для корректной обработки строк CSV на гра-
ницах диапазонов. Значение должно быть достаточным для размещения хотя
бы одной полной строки CSV.
Значение по умолчанию: 131072 (128 КБ)

• AGGREGATION_INTERVAL - интервал агрегации в секундах. Опреде-
ляет размер временного периода, по которому группируются данные.
Типичные значения:

– 60 - агрегация по минутам

– 600 - агрегация по 10 минутам

– 3600 - агрегация по часам

– 86400 - агрегация по дням

• USE_CUDA - флаг использования GPU для агрегации данных. Если уста-
новлен в 1, программа попытается использовать GPU. Если GPU недоступен
или флаг установлен в 0, используется CPU-версия агрегации.
Значения: 0 (отключено) или 1 (включено)

• USE_BLOCK_KERNEL - выбор варианта CUDA-ядра для GPU-агрегации
(действует только при USE_CUDA=1). Определяет, какое ядро будет использо-
ваться для параллельной обработки на GPU.
Значения:

– 0 - использовать простое ядро (один поток на период)

– 1 - использовать блочное ядро (один блок на период)

37

Рекомендации по выбору:

– Для больших интервалов агрегации (дни, часы) - USE_BLOCK_KERNEL=1

– Для малых интервалов агрегации (минуты, секунды) - USE_BLOCK_KERNEL=0

Пример конфигурации в run.slurm:
1 export DATA_PATH="/mnt/shared/supercomputers/data/data_10s.csv"
2 export DATA_READ_SHARES="10,11,13,14"
3 export READ_OVERLAP_BYTES=131072
4 export AGGREGATION_INTERVAL=60
5 export USE_CUDA=1
6 export USE_BLOCK_KERNEL=0

38

1.13 Структура проекта
Исходный проект содержит в себе следующие зависимости:

• CUDA-Toolkit 12.8;

• OpenMPI 3.

Можно выделить следующие основные сущности:

• run.slurm - SLURM-скрипт для запуска параллельного приложения на 4 уз-
лах с настройкой переменных окружения (путь к данным, доли данных для
каждого ранка, интервал агрегации, использование CUDA). Исходный текст
файла представлен в Приложение A;

• Makefile - файл системы сборки, описывающий компиляцию C++ исходников
с помощью mpic++ и компиляцию CUDA-плагина с помощью nvcc, а также
правила запуска и очистки. Исходный текст файла представлен в Приложение
Б;

• src/main.cpp - основная MPI-программа: координирует выполнение парал-
лельного чтения CSV данных, агрегацию данных по временным периодам (на
CPU или GPU), поиск интервалов изменения цены и запись результатов. Ис-
ходный текст файла представлен в Приложение В;

• src/csv_loader.cpp, src/csv_loader.hpp - модуль параллельной загрузки
CSV-файла: каждый MPI-ранк читает свою часть файла с перекрытием для
обработки границ строк, парсит записи Bitcoin данных. Исходный текст файла
представлен в Приложение Г;

• src/aggregation.cpp, src/aggregation.hpp - модуль агрегации временных
рядов на CPU: группирует записи по временным интервалам, вычисляет сред-
нее значение (Low+High)/2, минимумы и максимумы Open/Close за каждый
период. Исходный текст файла представлен в Приложение Д;

• src/gpu_loader.cpp, src/gpu_loader.hpp - модуль динамической загрузки
GPU-плагина: проверяет доступность GPU, загружает функции из libgpu_compute.so,
преобразует данные из AoS в SoA для передачи на GPU. Исходный текст фай-
ла представлен в Приложение Е;

• src/gpu_plugin.cu - CUDA-модуль агрегации данных на GPU: использует
библиотеку CUB для RLE и scan операций, реализует два ядра агрегации
(блочное для больших интервалов и простое для множества малых периодов).
Исходный текст файла представлен в Приложение Ж;

• src/intervals.cpp, src/intervals.hpp - модуль параллельного поиска ин-
тервалов изменения цены: каждый ранк обрабатывает свою часть периодов,
передаёт незавершённые интервалы следующему ранку через MPI, собирает
результаты на ранке 0. Исходный текст файла представлен в Приложение З;

• src/utils.cpp, src/utils.hpp - вспомогательный модуль: чтение перемен-
ных окружения, вычисление диапазонов байт для параллельного чтения фай-
ла, удаление граничных периодов, получение размера файла. Исходный текст
файла представлен в Приложение И;

39

• src/period_stats.hpp - заголовочный файл с определением структуры
PeriodStats, хранящей агрегированные статистики за один временной пери-
од (среднее значение, минимумы и максимумы Open/Close). Исходный текст
файла представлен в Приложение К;

• src/record.hpp - заголовочный файл с определением структуры Record для
хранения одной записи из CSV-файла Bitcoin (timestamp, open, high, low, close,
volume). Исходный текст файла представлен в Приложение Л;

• data/data_10s.csv - текстовый файл с входными данными о стоимости Bitcoin
по каждым 10 секундам в формате CSV;

• result.csv - выходной файл с найденными интервалами изменения цены не
менее чем на 10%.

Также в рамках проекта используется система автоматизированной сборки. Для
сборки и запуска проекта необходимо выполнить следующие команды:

1 make
2 make run

40

ЗАКЛЮЧЕНИЕ
В ходе выполнения лабораторной работы были решены задачи, направленные на
освоение параллельных вычислений с использованием разнородных типов вычисли-
тельных ресурсов. В результате работы удалось:

• Создать виртуальные машины, обеспечивающие выполнение задач как на
GPU-узлах, так и на CPU-узлах;

• Настроить сеть для обеспечения стабильной связи между хост-системой и вир-
туальными узлами;

• Реализовать параллельное приложение с использованием механизма OpenMPI,
задействующее ресурсы разнородных узлов;

• Изучить технологии CUDA, OpenMPI, Slurm.

Были изучены технологии OpenMPI, CUDA Toolkit и библиотека CUB. В рамках
работы было разработано параллельное приложение на языке C++, использующее
разнородный вид вычислительных ресурсов для анализа временных рядов истори-
ческих данных о стоимости Bitcoin.

Разработанная программа выполняет параллельную агрегацию временных ря-
дов и поиск интервалов значительного изменения цены. Ключевые особенности реа-
лизации:

• Параллельное чтение CSV-файла размером 2.3 ГБ с использованием техники
перекрытия диапазонов для корректной обработки границ строк.

• Гибридная агрегация данных, поддерживающая вычисления как на CPU (по-
следовательная обработка), так и на GPU (параллельная обработка с исполь-
зованием CUDA).

• Два варианта CUDA-ядер: блочное ядро для больших интервалов агрегации
(дни, часы) и простое ядро для малых интервалов (минуты, секунды).

• Динамическая загрузка GPU-плагина через dlopen, позволяющая запускать
приложение на узлах без GPU без перекомпиляции.

• Параллельный поиск интервалов изменения цены с передачей незавершённых
интервалов между ранками через MPI.

• Гибкая конфигурация через переменные окружения, позволяющая настраи-
вать параметры работы без изменения исходного кода.

Для наглядной демонстрации эффективности параллельных вычислений был
разработан скрипт линейной интерполяции данных, увеличивший объём исходного
набора данных с 360 МБ до 2.3 ГБ. Это позволило достоверно оценить преимущества
параллельной обработки и GPU-ускорения.

В рамках работы получены практические знания о гетерогенных вычислитель-
ных системах и реализовано полнофункциональное параллельное приложение, эф-
фективно использующее ресурсы разнородных вычислителей для обработки боль-
ших объёмов временных рядов.

41

Список литературы
[1] Zielak - Bitcoin Historical Data // kaggle URL:

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data (дата об-
ращения: 10.01.2026).

[2] Hyper-V Documentation // Microsoft URL: https://learn.microsoft.com/en-
us/virtualization/hyper-v-on-windows/ (дата обращения: 10.01.2026).

[3] Ubuntu OS Docs // Ubuntu URL: https://ubuntu.com/server/docs (дата обращения:
10.01.2026).

[4] New-VMSwitch: Документация PowerShell // Microsoft 365 URL:
https://learn.microsoft.com/en-us/powershell/module/hyper-v/new-
vmswitch?view=windowsserver2025-ps (дата обращения: 10.01.2026).

[5] New-NetIPAddress: Документация PowerShell // Microsoft 365
URL: https://learn.microsoft.com/en-us/powershell/module/nettcpip/new-
netipaddress?view=windowsserver2025-ps (дата обращения: 10.01.2026).

[6] New-NetNat: Документация PowerShell // Microsoft 365 URL:
https://learn.microsoft.com/en-us/powershell/module/netnat/New-
NetNat?view=windowsserver2016-ps (дата обращения: 10.01.2026).

[7] Add-NetNatStaticMapping: Документация PowerShell // Microsoft 365
URL: https://learn.microsoft.com/ru-ru/powershell/module/netnat/add-
netnatstaticmapping?view=windowsserver2022-ps (дата обращения: 10.01.2026).

[8] Get-VMHostPartitionableGpu: Документация PowerShell // Microsoft 365
URL: https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-
vmhostpartitionablegpu?view=windowsserver2025-ps (дата обращения: 10.01.2026).

[9] Set-VM: Документация PowerShell // Microsoft 365 URL:
https://learn.microsoft.com/en-us/powershell/module/hyper-v/set-
vm?view=windowsserver2025-ps (дата обращения: 10.01.2026).

[10] RFC 1094: NFS: Network File System Protocol Specification // Sun Microsystems,
Inc. URL: https://datatracker.ietf.org/doc/html/rfc1094 (дата обращения:
10.01.2026).

42

ПРИЛОЖЕНИЕ А

1 #!/bin/bash
2 #SBATCH --job-name=btc
3 #SBATCH --nodes=4
4 #SBATCH --ntasks=4
5 #SBATCH --cpus-per-task=2
6 #SBATCH --output=out.txt
7
8 # Путь к файлу данных (должен существовать на всех узлах)
9 export DATA_PATH="/mnt/shared/supercomputers/data/data_10s.csv"

10
11 # Доли данных для каждого ранка (сумма определяет пропорции)
12 export DATA_READ_SHARES="10,11,13,14"
13
14 # Размер перекрытия в байтах для обработки границ строк
15 export READ_OVERLAP_BYTES=131072
16
17 # Интервал агрегации в секундах (60 = минуты, 600 = 10 минут, 86400 = дни)
18 export AGGREGATION_INTERVAL=60
19
20 # Использовать ли CUDA для агрегации (0 = нет, 1 = да)
21 export USE_CUDA=1
22
23 # Использовать ли блочное ядро (быстрее для больших интервалов, 0 = нет, 1 = да)
24 export USE_BLOCK_KERNEL=0
25
26 cd /mnt/shared/supercomputers/build
27 mpirun -np $SLURM_NTASKS ./bitcoin_app

43

ПРИЛОЖЕНИЕ Б

1 CXX = mpic++
2 CXXFLAGS = -std=c++17 -O2 -Wall -Wextra -Wno-cast-function-type -fopenmp
3
4 NVCC = nvcc
5 NVCCFLAGS = -O3 -std=c++17 -arch=sm_86 -Xcompiler -fPIC
6
7 SRC_DIR = src
8 BUILD_DIR = build
9

10 SRCS = $(wildcard $(SRC_DIR)/*.cpp)
11 OBJS = $(patsubst $(SRC_DIR)/%.cpp,$(BUILD_DIR)/%.o,$(SRCS))
12
13 TARGET = $(BUILD_DIR)/bitcoin_app
14
15 PLUGIN_SRC = $(SRC_DIR)/gpu_plugin.cu
16 PLUGIN = $(BUILD_DIR)/libgpu_compute.so
17
18 all: $(PLUGIN) $(TARGET)
19
20 $(BUILD_DIR):
21 mkdir -p $(BUILD_DIR)
22
23 $(BUILD_DIR)/%.o: $(SRC_DIR)/%.cpp | $(BUILD_DIR)
24 $(CXX) $(CXXFLAGS) -c $< -o $@
25
26 $(TARGET): $(OBJS)
27 $(CXX) $(CXXFLAGS) $ˆ -o $@ -ldl
28
29 $(PLUGIN): $(PLUGIN_SRC) | $(BUILD_DIR)
30 $(NVCC) $(NVCCFLAGS) -shared $< -o $@
31
32 clean:
33 rm -rf $(BUILD_DIR)
34
35 run: all
36 sbatch run.slurm
37
38 .PHONY: all clean run

44

ПРИЛОЖЕНИЕ В

1 #include <mpi.h>
2 #include <iostream>
3 #include <vector>
4 #include <iomanip>
5
6 #include "csv_loader.hpp"
7 #include "record.hpp"
8 #include "period_stats.hpp"
9 #include "aggregation.hpp"

10 #include "intervals.hpp"
11 #include "utils.hpp"
12 #include "gpu_loader.hpp"
13
14 int main(int argc, char** argv) {
15 MPI_Init(&argc, &argv);
16 double total_start = MPI_Wtime();
17
18 int rank, size;
19 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
20 MPI_Comm_size(MPI_COMM_WORLD, &size);
21
22 // Проверяем доступность GPU
23 bool use_cuda = get_use_cuda();
24 bool have_gpu = gpu_is_available();
25 bool use_gpu = use_cuda && have_gpu;
26
27 std::cout << "Rank " << rank
28 << ": USE_CUDA=" << use_cuda
29 << ", GPU available=" << have_gpu
30 << ", using " << (use_gpu ? "GPU" : "CPU")
31 << std::endl;
32
33 // Параллельное чтение данных
34 double read_start = MPI_Wtime();
35 std::vector<Record> records = load_csv_parallel(rank, size);
36 double read_time = MPI_Wtime() - read_start;
37
38 std::cout << "Rank " << rank
39 << ": read " << records.size() << " records"
40 << " in " << std::fixed << std::setprecision(3) << read_time << " sec"
41 << std::endl;
42
43 // Агрегация по периодам
44 double agg_start = MPI_Wtime();
45 std::vector<PeriodStats> periods;
46
47 if (use_gpu) {
48 int64_t interval = get_aggregation_interval();
49 if (!aggregate_periods_gpu(records, interval, periods)) {
50 std::cerr << "Rank " << rank << ": GPU aggregation failed, falling back to CPU" << std::endl;
51 periods = aggregate_periods(records);
52 }
53 } else {
54 periods = aggregate_periods(records);
55 }
56
57 double agg_time = MPI_Wtime() - agg_start;
58
59 std::cout << "Rank " << rank
60 << ": aggregated " << periods.size() << " periods"
61 << " [" << (periods.empty() ? 0 : periods.front().period)

45

62 << ".." << (periods.empty() ? 0 : periods.back().period) << "]"
63 << " in " << std::fixed << std::setprecision(3) << agg_time << " sec"
64 << std::endl;
65
66 // Удаляем крайние периоды (могут быть неполными из-за параллельного чтения)
67 trim_edge_periods(periods, rank, size);
68
69 std::cout << "Rank " << rank
70 << ": after trim " << periods.size() << " periods"
71 << " [" << (periods.empty() ? 0 : periods.front().period)
72 << ".." << (periods.empty() ? 0 : periods.back().period) << "]"
73 << std::endl;
74
75 // Параллельное построение интервалов
76 IntervalResult iv_result = find_intervals_parallel(periods, rank, size);
77
78 std::cout << "Rank " << rank
79 << ": found " << iv_result.intervals.size() << " intervals"
80 << ", compute " << std::fixed << std::setprecision(6) << iv_result.compute_time << " sec"
81 << ", wait " << iv_result.wait_time << " sec"
82 << std::endl;
83
84 // Сбор интервалов на ранке 0
85 double collect_wait = collect_intervals(iv_result.intervals, rank, size);
86
87 if (rank == 0) {
88 std::cout << "Rank 0: collected " << iv_result.intervals.size() << " total intervals"
89 << ", wait " << std::fixed << std::setprecision(3) << collect_wait << " sec"
90 << std::endl;
91 }
92
93 // Запись результатов в файл (только ранк 0)
94 if (rank == 0) {
95 double write_start = MPI_Wtime();
96 write_intervals("result.csv", iv_result.intervals);
97 double write_time = MPI_Wtime() - write_start;
98
99 std::cout << "Rank 0: wrote result.csv"

100 << " in " << std::fixed << std::setprecision(3) << write_time << " sec"
101 << std::endl;
102 }
103
104 // Вывод общего времени выполнения
105 MPI_Barrier(MPI_COMM_WORLD);
106 double total_time = MPI_Wtime() - total_start;
107 if (rank == 0) {
108 std::cout << "Total execution time: "
109 << std::fixed << std::setprecision(3)
110 << total_time << " sec" << std::endl;
111 }
112
113 MPI_Finalize();
114 return 0;
115 }

46

ПРИЛОЖЕНИЕ Г

1 #include "csv_loader.hpp"
2 #include <fstream>
3 #include <sstream>
4 #include <iostream>
5 #include <stdexcept>
6
7 bool parse_csv_line(const std::string& line, Record& record) {
8 if (line.empty()) {
9 return false;

10 }
11
12 std::stringstream ss(line);
13 std::string item;
14
15 try {
16 // timestamp
17 if (!std::getline(ss, item, ’,’) || item.empty()) return false;
18 record.timestamp = std::stod(item);
19
20 // open
21 if (!std::getline(ss, item, ’,’) || item.empty()) return false;
22 record.open = std::stod(item);
23
24 // high
25 if (!std::getline(ss, item, ’,’) || item.empty()) return false;
26 record.high = std::stod(item);
27
28 // low
29 if (!std::getline(ss, item, ’,’) || item.empty()) return false;
30 record.low = std::stod(item);
31
32 // close
33 if (!std::getline(ss, item, ’,’) || item.empty()) return false;
34 record.close = std::stod(item);
35
36 // volume
37 if (!std::getline(ss, item, ’,’)) return false;
38 // Volume может быть пустым или содержать данные
39 if (item.empty()) {
40 record.volume = 0.0;
41 } else {
42 record.volume = std::stod(item);
43 }
44
45 return true;
46 } catch (const std::exception&) {
47 return false;
48 }
49 }
50
51 std::vector<Record> load_csv_parallel(int rank, int size) {
52 std::vector<Record> data;
53
54 // Читаем настройки из переменных окружения
55 std::string data_path = get_data_path();
56 std::vector<int> shares = get_data_read_shares();
57 int64_t overlap_bytes = get_read_overlap_bytes();
58
59 // Получаем размер файла
60 int64_t file_size = get_file_size(data_path);
61

47

62 // Вычисляем диапазон байт для этого ранка
63 ByteRange range = calculate_byte_range(rank, size, file_size, shares, overlap_bytes);
64
65 // Открываем файл и читаем нужный диапазон
66 std::ifstream file(data_path, std::ios::binary);
67 if (!file.is_open()) {
68 throw std::runtime_error("Cannot open file: " + data_path);
69 }
70
71 // Переходим к началу диапазона
72 file.seekg(range.start);
73
74 // Читаем данные в буфер
75 int64_t bytes_to_read = range.end - range.start;
76 std::vector<char> buffer(bytes_to_read);
77 file.read(buffer.data(), bytes_to_read);
78 int64_t bytes_read = file.gcount();
79
80 file.close();
81
82 // Преобразуем в строку для удобства парсинга
83 std::string content(buffer.data(), bytes_read);
84
85 // Находим позицию начала первой полной строки
86 size_t parse_start = 0;
87 if (rank == 0) {
88 // Первый ранк: пропускаем заголовок (первую строку)
89 size_t header_end = content.find(’\n’);
90 if (header_end != std::string::npos) {
91 parse_start = header_end + 1;
92 }
93 } else {
94 // Остальные ранки: начинаем с первого \n (пропускаем неполную строку)
95 size_t first_newline = content.find(’\n’);
96 if (first_newline != std::string::npos) {
97 parse_start = first_newline + 1;
98 }
99 }

100
101 // Находим позицию конца последней полной строки
102 size_t parse_end = content.size();
103 if (rank != size - 1) {
104 // Не последний ранк: ищем последний \n
105 size_t last_newline = content.rfind(’\n’);
106 if (last_newline != std::string::npos && last_newline > parse_start) {
107 parse_end = last_newline;
108 }
109 }
110
111 // Парсим строки
112 size_t pos = parse_start;
113 while (pos < parse_end) {
114 size_t line_end = content.find(’\n’, pos);
115 if (line_end == std::string::npos || line_end > parse_end) {
116 line_end = parse_end;
117 }
118
119 std::string line = content.substr(pos, line_end - pos);
120
121 // Убираем \r если есть (Windows line endings)
122 if (!line.empty() && line.back() == ’\r’) {
123 line.pop_back();
124 }
125

48

126 Record record;
127 if (parse_csv_line(line, record)) {
128 data.push_back(record);
129 }
130
131 pos = line_end + 1;
132 }
133
134 return data;
135 }

49

ПРИЛОЖЕНИЕ Д

1 #include "aggregation.hpp"
2 #include "utils.hpp"
3
4 #include <algorithm>
5 #include <cstdint>
6 #include <limits>
7 #include <vector>
8
9 std::vector<PeriodStats> aggregate_periods(const std::vector<Record>& records) {

10 const int64_t interval = get_aggregation_interval();
11
12 std::vector<PeriodStats> result;
13 if (records.empty()) return result;
14
15 struct PeriodAccumulator {
16 double avg_sum = 0.0;
17 double open_min = std::numeric_limits<double>::max();
18 double open_max = std::numeric_limits<double>::lowest();
19 double close_min = std::numeric_limits<double>::max();
20 double close_max = std::numeric_limits<double>::lowest();
21 int64_t count = 0;
22
23 void add(const Record& r) {
24 const double avg = (r.low + r.high) / 2.0;
25 avg_sum += avg;
26 open_min = std::min(open_min, r.open);
27 open_max = std::max(open_max, r.open);
28 close_min = std::min(close_min, r.close);
29 close_max = std::max(close_max, r.close);
30 ++count;
31 }
32 };
33
34 PeriodIndex current_period =
35 static_cast<PeriodIndex>(records[0].timestamp) / interval;
36
37 PeriodAccumulator acc;
38 acc.add(records[0]);
39
40 for (size_t i = 1; i < records.size(); ++i) {
41 const Record& r = records[i];
42 const PeriodIndex period =
43 static_cast<PeriodIndex>(r.timestamp) / interval;
44
45 if (period != current_period) {
46 PeriodStats stats;
47 stats.period = current_period;
48 stats.avg = acc.avg_sum / static_cast<double>(acc.count);
49 stats.open_min = acc.open_min;
50 stats.open_max = acc.open_max;
51 stats.close_min = acc.close_min;
52 stats.close_max = acc.close_max;
53 stats.count = acc.count;
54 result.push_back(stats);
55
56 current_period = period;
57 acc = PeriodAccumulator{};
58 }
59
60 acc.add(r);
61 }

50

62
63 // последний период
64 PeriodStats stats;
65 stats.period = current_period;
66 stats.avg = acc.avg_sum / static_cast<double>(acc.count);
67 stats.open_min = acc.open_min;
68 stats.open_max = acc.open_max;
69 stats.close_min = acc.close_min;
70 stats.close_max = acc.close_max;
71 stats.count = acc.count;
72 result.push_back(stats);
73
74 return result;
75 }

51

ПРИЛОЖЕНИЕ Е

1 #include "gpu_loader.hpp"
2 #include <dlfcn.h>
3 #include <iostream>
4 #include <cstdint>
5
6 // Структура результата GPU (должна совпадать с gpu_plugin.cu)
7 struct GpuPeriodStats {
8 int64_t period;
9 double avg;

10 double open_min;
11 double open_max;
12 double close_min;
13 double close_max;
14 int64_t count;
15 };
16
17 // Типы функций из GPU плагина
18 using gpu_is_available_fn = int (*)();
19
20 using gpu_aggregate_periods_fn = int (*)(
21 const double* h_timestamps,
22 const double* h_open,
23 const double* h_high,
24 const double* h_low,
25 const double* h_close,
26 int num_ticks,
27 int64_t interval,
28 GpuPeriodStats** h_out_stats,
29 int* out_num_periods
30);
31
32 using gpu_free_results_fn = void (*)(GpuPeriodStats*);
33
34 static void* get_gpu_lib_handle() {
35 static void* h = dlopen("./libgpu_compute.so", RTLD_NOW | RTLD_LOCAL);
36 return h;
37 }
38
39 bool gpu_is_available() {
40 void* h = get_gpu_lib_handle();
41 if (!h) return false;
42
43 auto fn = reinterpret_cast<gpu_is_available_fn>(dlsym(h, "gpu_is_available"));
44 if (!fn) return false;
45
46 return fn() != 0;
47 }
48
49 bool aggregate_periods_gpu(
50 const std::vector<Record>& records,
51 int64_t aggregation_interval,
52 std::vector<PeriodStats>& out_stats)
53 {
54 if (records.empty()) {
55 out_stats.clear();
56 return true;
57 }
58
59 void* h = get_gpu_lib_handle();
60 if (!h) {
61 std::cerr << "GPU: Failed to load libgpu_compute.so" << std::endl;

52

62 return false;
63 }
64
65 auto aggregate_fn = reinterpret_cast<gpu_aggregate_periods_fn>(
66 dlsym(h, "gpu_aggregate_periods"));
67 auto free_fn = reinterpret_cast<gpu_free_results_fn>(
68 dlsym(h, "gpu_free_results"));
69
70 if (!aggregate_fn || !free_fn) {
71 std::cerr << "GPU: Failed to load functions from plugin" << std::endl;
72 return false;
73 }
74
75 int num_ticks = static_cast<int>(records.size());
76
77 // Конвертируем AoS в SoA
78 std::vector<double> timestamps(num_ticks);
79 std::vector<double> open(num_ticks);
80 std::vector<double> high(num_ticks);
81 std::vector<double> low(num_ticks);
82 std::vector<double> close(num_ticks);
83
84 for (int i = 0; i < num_ticks; i++) {
85 timestamps[i] = records[i].timestamp;
86 open[i] = records[i].open;
87 high[i] = records[i].high;
88 low[i] = records[i].low;
89 close[i] = records[i].close;
90 }
91
92 // Вызываем GPU функцию
93 GpuPeriodStats* gpu_stats = nullptr;
94 int num_periods = 0;
95
96 int result = aggregate_fn(
97 timestamps.data(),
98 open.data(),
99 high.data(),

100 low.data(),
101 close.data(),
102 num_ticks,
103 aggregation_interval,
104 &gpu_stats,
105 &num_periods
106);
107
108 if (result != 0) {
109 std::cerr << "GPU: Aggregation failed with code " << result << std::endl;
110 return false;
111 }
112
113 // Конвертируем результат в PeriodStats
114 out_stats.clear();
115 out_stats.reserve(num_periods);
116
117 for (int i = 0; i < num_periods; i++) {
118 PeriodStats ps;
119 ps.period = gpu_stats[i].period;
120 ps.avg = gpu_stats[i].avg;
121 ps.open_min = gpu_stats[i].open_min;
122 ps.open_max = gpu_stats[i].open_max;
123 ps.close_min = gpu_stats[i].close_min;
124 ps.close_max = gpu_stats[i].close_max;
125 ps.count = gpu_stats[i].count;

53

126 out_stats.push_back(ps);
127 }
128
129 // Освобождаем память
130 free_fn(gpu_stats);
131
132 return true;
133 }

54

ПРИЛОЖЕНИЕ Ж

1 #include <cuda_runtime.h>
2 #include <cub/cub.cuh>
3 #include <cstdint>
4 #include <cfloat>
5 #include <cstdio>
6 #include <cstdlib>
7 #include <ctime>
8 #include <string>
9 #include <sstream>

10 #include <iomanip>
11
12 // ==
13 // Структуры данных
14 // ==
15
16 // Результат агрегации одного периода
17 struct GpuPeriodStats {
18 int64_t period;
19 double avg;
20 double open_min;
21 double open_max;
22 double close_min;
23 double close_max;
24 int64_t count;
25 };
26
27 // ==
28 // Вспомогательные функции
29 // ==
30
31 static double get_time_ms() {
32 struct timespec ts;
33 clock_gettime(CLOCK_MONOTONIC, &ts);
34 return ts.tv_sec * 1000.0 + ts.tv_nsec / 1000000.0;
35 }
36
37 #define CUDA_CHECK(call) do { \
38 cudaError_t err = call; \
39 if (err != cudaSuccess) { \
40 printf("CUDA error at %s:%d: %s\n", __FILE__, __LINE__, cudaGetErrorString(err)); \
41 return -1; \
42 } \
43 } while(0)
44
45 // ==
46 // Kernel: вычисление period_id для каждого тика
47 // ==
48
49 __global__ void compute_period_ids_kernel(
50 const double* __restrict__ timestamps,
51 int64_t* __restrict__ period_ids,
52 int n,
53 int64_t interval)
54 {
55 int idx = blockIdx.x * blockDim.x + threadIdx.x;
56 if (idx < n) {
57 period_ids[idx] = static_cast<int64_t>(timestamps[idx]) / interval;
58 }
59 }
60
61 // ==

55

62 // Kernel: агрегация одного периода (один блок на период)
63 // ==
64
65 __global__ void aggregate_periods_kernel(
66 const double* __restrict__ open,
67 const double* __restrict__ high,
68 const double* __restrict__ low,
69 const double* __restrict__ close,
70 const int64_t* __restrict__ unique_periods,
71 const int* __restrict__ offsets,
72 const int* __restrict__ counts,
73 int num_periods,
74 GpuPeriodStats* __restrict__ out_stats)
75 {
76 int period_idx = blockIdx.x;
77 if (period_idx >= num_periods) return;
78
79 int offset = offsets[period_idx];
80 int count = counts[period_idx];
81
82 // Используем shared memory для редукции внутри блока
83 __shared__ double s_avg_sum;
84 __shared__ double s_open_min;
85 __shared__ double s_open_max;
86 __shared__ double s_close_min;
87 __shared__ double s_close_max;
88
89 // Инициализация shared memory первым потоком
90 if (threadIdx.x == 0) {
91 s_avg_sum = 0.0;
92 s_open_min = DBL_MAX;
93 s_open_max = -DBL_MAX;
94 s_close_min = DBL_MAX;
95 s_close_max = -DBL_MAX;
96 }
97 __syncthreads();
98
99 // Локальные аккумуляторы для каждого потока

100 double local_avg_sum = 0.0;
101 double local_open_min = DBL_MAX;
102 double local_open_max = -DBL_MAX;
103 double local_close_min = DBL_MAX;
104 double local_close_max = -DBL_MAX;
105
106 // Каждый поток обрабатывает свою часть тиков
107 for (int i = threadIdx.x; i < count; i += blockDim.x) {
108 int tick_idx = offset + i;
109 double avg = (low[tick_idx] + high[tick_idx]) / 2.0;
110 local_avg_sum += avg;
111 local_open_min = min(local_open_min, open[tick_idx]);
112 local_open_max = max(local_open_max, open[tick_idx]);
113 local_close_min = min(local_close_min, close[tick_idx]);
114 local_close_max = max(local_close_max, close[tick_idx]);
115 }
116
117 // Редукция с использованием атомарных операций
118 atomicAdd(&s_avg_sum, local_avg_sum);
119 atomicMin(reinterpret_cast<unsigned long long*>(&s_open_min),
120 __double_as_longlong(local_open_min));
121 atomicMax(reinterpret_cast<unsigned long long*>(&s_open_max),
122 __double_as_longlong(local_open_max));
123 atomicMin(reinterpret_cast<unsigned long long*>(&s_close_min),
124 __double_as_longlong(local_close_min));
125 atomicMax(reinterpret_cast<unsigned long long*>(&s_close_max),

56

126 __double_as_longlong(local_close_max));
127
128 __syncthreads();
129
130 // Первый поток записывает результат
131 if (threadIdx.x == 0) {
132 GpuPeriodStats stats;
133 stats.period = unique_periods[period_idx];
134 stats.avg = s_avg_sum / static_cast<double>(count);
135 stats.open_min = s_open_min;
136 stats.open_max = s_open_max;
137 stats.close_min = s_close_min;
138 stats.close_max = s_close_max;
139 stats.count = count;
140 out_stats[period_idx] = stats;
141 }
142 }
143
144 // ==
145 // Простой kernel для агрегации (один поток на период)
146 // Используется когда периодов много и тиков в каждом мало
147 // ==
148
149 __global__ void aggregate_periods_simple_kernel(
150 const double* __restrict__ open,
151 const double* __restrict__ high,
152 const double* __restrict__ low,
153 const double* __restrict__ close,
154 const int64_t* __restrict__ unique_periods,
155 const int* __restrict__ offsets,
156 const int* __restrict__ counts,
157 int num_periods,
158 GpuPeriodStats* __restrict__ out_stats)
159 {
160 int period_idx = blockIdx.x * blockDim.x + threadIdx.x;
161 if (period_idx >= num_periods) return;
162
163 int offset = offsets[period_idx];
164 int count = counts[period_idx];
165
166 double avg_sum = 0.0;
167 double open_min = DBL_MAX;
168 double open_max = -DBL_MAX;
169 double close_min = DBL_MAX;
170 double close_max = -DBL_MAX;
171
172 for (int i = 0; i < count; i++) {
173 int tick_idx = offset + i;
174 double avg = (low[tick_idx] + high[tick_idx]) / 2.0;
175 avg_sum += avg;
176 open_min = min(open_min, open[tick_idx]);
177 open_max = max(open_max, open[tick_idx]);
178 close_min = min(close_min, close[tick_idx]);
179 close_max = max(close_max, close[tick_idx]);
180 }
181
182 GpuPeriodStats stats;
183 stats.period = unique_periods[period_idx];
184 stats.avg = avg_sum / static_cast<double>(count);
185 stats.open_min = open_min;
186 stats.open_max = open_max;
187 stats.close_min = close_min;
188 stats.close_max = close_max;
189 stats.count = count;

57

190 out_stats[period_idx] = stats;
191 }
192
193
194 // ==
195 // Проверка доступности GPU
196 // ==
197
198 extern "C" int gpu_is_available() {
199 int n = 0;
200 cudaError_t err = cudaGetDeviceCount(&n);
201 if (err != cudaSuccess) return 0;
202 return (n > 0) ? 1 : 0;
203 }
204
205 // ==
206 // Главная функция агрегации на GPU
207 // ==
208
209 extern "C" int gpu_aggregate_periods(
210 const double* h_timestamps,
211 const double* h_open,
212 const double* h_high,
213 const double* h_low,
214 const double* h_close,
215 int num_ticks,
216 int64_t interval,
217 GpuPeriodStats** h_out_stats,
218 int* out_num_periods)
219 {
220 if (num_ticks == 0) {
221 *h_out_stats = nullptr;
222 *out_num_periods = 0;
223 return 0;
224 }
225
226 std::ostringstream output;
227 double total_start = get_time_ms();
228
229 // ==
230 // Шаг 1: Выделение памяти и копирование данных на GPU
231 // ==
232 double step1_start = get_time_ms();
233
234 double* d_timestamps = nullptr;
235 double* d_open = nullptr;
236 double* d_high = nullptr;
237 double* d_low = nullptr;
238 double* d_close = nullptr;
239 int64_t* d_period_ids = nullptr;
240
241 size_t ticks_bytes = num_ticks * sizeof(double);
242
243 CUDA_CHECK(cudaMalloc(&d_timestamps, ticks_bytes));
244 CUDA_CHECK(cudaMalloc(&d_open, ticks_bytes));
245 CUDA_CHECK(cudaMalloc(&d_high, ticks_bytes));
246 CUDA_CHECK(cudaMalloc(&d_low, ticks_bytes));
247 CUDA_CHECK(cudaMalloc(&d_close, ticks_bytes));
248 CUDA_CHECK(cudaMalloc(&d_period_ids, num_ticks * sizeof(int64_t)));
249
250 CUDA_CHECK(cudaMemcpy(d_timestamps, h_timestamps, ticks_bytes, cudaMemcpyHostToDevice));
251 CUDA_CHECK(cudaMemcpy(d_open, h_open, ticks_bytes, cudaMemcpyHostToDevice));
252 CUDA_CHECK(cudaMemcpy(d_high, h_high, ticks_bytes, cudaMemcpyHostToDevice));
253 CUDA_CHECK(cudaMemcpy(d_low, h_low, ticks_bytes, cudaMemcpyHostToDevice));

58

254 CUDA_CHECK(cudaMemcpy(d_close, h_close, ticks_bytes, cudaMemcpyHostToDevice));
255
256 double step1_ms = get_time_ms() - step1_start;
257
258 // ==
259 // Шаг 2: Вычисление period_id для каждого тика
260 // ==
261 double step2_start = get_time_ms();
262
263 const int BLOCK_SIZE = 256;
264 int num_blocks = (num_ticks + BLOCK_SIZE - 1) / BLOCK_SIZE;
265
266 compute_period_ids_kernel<<<num_blocks, BLOCK_SIZE>>>(
267 d_timestamps, d_period_ids, num_ticks, interval);
268 CUDA_CHECK(cudaGetLastError());
269 CUDA_CHECK(cudaDeviceSynchronize());
270
271 double step2_ms = get_time_ms() - step2_start;
272
273 // ==
274 // Шаг 3: RLE (Run-Length Encode) для нахождения уникальных периодов
275 // ==
276 double step3_start = get_time_ms();
277
278 int64_t* d_unique_periods = nullptr;
279 int* d_counts = nullptr;
280 int* d_num_runs = nullptr;
281
282 CUDA_CHECK(cudaMalloc(&d_unique_periods, num_ticks * sizeof(int64_t)));
283 CUDA_CHECK(cudaMalloc(&d_counts, num_ticks * sizeof(int)));
284 CUDA_CHECK(cudaMalloc(&d_num_runs, sizeof(int)));
285
286 // Определяем размер временного буфера для CUB
287 void* d_temp_storage = nullptr;
288 size_t temp_storage_bytes = 0;
289
290 cub::DeviceRunLengthEncode::Encode(
291 d_temp_storage, temp_storage_bytes,
292 d_period_ids, d_unique_periods, d_counts, d_num_runs,
293 num_ticks);
294
295 CUDA_CHECK(cudaMalloc(&d_temp_storage, temp_storage_bytes));
296
297 cub::DeviceRunLengthEncode::Encode(
298 d_temp_storage, temp_storage_bytes,
299 d_period_ids, d_unique_periods, d_counts, d_num_runs,
300 num_ticks);
301 CUDA_CHECK(cudaGetLastError());
302
303 // Копируем количество уникальных периодов
304 int num_periods = 0;
305 CUDA_CHECK(cudaMemcpy(&num_periods, d_num_runs, sizeof(int), cudaMemcpyDeviceToHost));
306
307 cudaFree(d_temp_storage);
308 d_temp_storage = nullptr;
309
310 double step3_ms = get_time_ms() - step3_start;
311
312 // ==
313 // Шаг 4: Exclusive Scan для вычисления offsets
314 // ==
315 double step4_start = get_time_ms();
316
317 int* d_offsets = nullptr;

59

318 CUDA_CHECK(cudaMalloc(&d_offsets, num_periods * sizeof(int)));
319
320 temp_storage_bytes = 0;
321 cub::DeviceScan::ExclusiveSum(
322 d_temp_storage, temp_storage_bytes,
323 d_counts, d_offsets, num_periods);
324
325 CUDA_CHECK(cudaMalloc(&d_temp_storage, temp_storage_bytes));
326
327 cub::DeviceScan::ExclusiveSum(
328 d_temp_storage, temp_storage_bytes,
329 d_counts, d_offsets, num_periods);
330 CUDA_CHECK(cudaGetLastError());
331
332 cudaFree(d_temp_storage);
333
334 double step4_ms = get_time_ms() - step4_start;
335
336 // ==
337 // Шаг 5: Агрегация периодов
338 // ==
339 double step5_start = get_time_ms();
340
341 GpuPeriodStats* d_out_stats = nullptr;
342 CUDA_CHECK(cudaMalloc(&d_out_stats, num_periods * sizeof(GpuPeriodStats)));
343
344 // Выбор ядра через переменную окружения USE_BLOCK_KERNEL
345 const char* env_block_kernel = std::getenv("USE_BLOCK_KERNEL");
346 if (env_block_kernel == nullptr) {
347 printf("Error: Environment variable USE_BLOCK_KERNEL is not set\n");
348 return -1;
349 }
350 bool use_block_kernel = std::atoi(env_block_kernel) != 0;
351
352 if (use_block_kernel) {
353 // Блочное ядро: один блок на период, потоки параллельно обрабатывают тики
354 // Лучше для больших интервалов с множеством тиков в каждом периоде
355 aggregate_periods_kernel<<<num_periods, BLOCK_SIZE>>>(
356 d_open, d_high, d_low, d_close,
357 d_unique_periods, d_offsets, d_counts,
358 num_periods, d_out_stats);
359 } else {
360 // Простое ядро: один поток на период
361 // Лучше для множества периодов с малым количеством тиков в каждом
362 int agg_blocks = (num_periods + BLOCK_SIZE - 1) / BLOCK_SIZE;
363 aggregate_periods_simple_kernel<<<agg_blocks, BLOCK_SIZE>>>(
364 d_open, d_high, d_low, d_close,
365 d_unique_periods, d_offsets, d_counts,
366 num_periods, d_out_stats);
367 }
368
369
370 CUDA_CHECK(cudaGetLastError());
371 CUDA_CHECK(cudaDeviceSynchronize());
372
373 double step5_ms = get_time_ms() - step5_start;
374
375 // ==
376 // Шаг 6: Копирование результатов на CPU
377 // ==
378 double step6_start = get_time_ms();
379
380 GpuPeriodStats* h_stats = new GpuPeriodStats[num_periods];
381 CUDA_CHECK(cudaMemcpy(h_stats, d_out_stats, num_periods * sizeof(GpuPeriodStats),

60

382 cudaMemcpyDeviceToHost));
383
384 double step6_ms = get_time_ms() - step6_start;
385
386 // ==
387 // Шаг 7: Освобождение GPU памяти
388 // ==
389 double step7_start = get_time_ms();
390
391 cudaFree(d_timestamps);
392 cudaFree(d_open);
393 cudaFree(d_high);
394 cudaFree(d_low);
395 cudaFree(d_close);
396 cudaFree(d_period_ids);
397 cudaFree(d_unique_periods);
398 cudaFree(d_counts);
399 cudaFree(d_offsets);
400 cudaFree(d_num_runs);
401 cudaFree(d_out_stats);
402
403 double step7_ms = get_time_ms() - step7_start;
404
405 // ==
406 // Итого
407 // ==
408 double total_ms = get_time_ms() - total_start;
409
410 // Формируем весь вывод одной строкой
411 output << " GPU aggregation (" << num_ticks << " ticks, interval=" << interval << " sec, kernel=" << (

use_block_kernel ? "block" : "simple") << "):\n";
412 output << " 1. Malloc + H->D copy: " << std::fixed << std::setprecision(3) << std::setw(7) <<

step1_ms << " ms\n";
413 output << " 2. Compute period_ids: " << std::setw(7) << step2_ms << " ms\n";
414 output << " 3. RLE (CUB): " << std::setw(7) << step3_ms << " ms (" << num_periods << "

periods)\n";
415 output << " 4. Exclusive scan: " << std::setw(7) << step4_ms << " ms\n";
416 output << " 5. Aggregation kernel: " << std::setw(7) << step5_ms << " ms (" << (use_block_kernel ?

"block" : "simple") << ")\n";
417 output << " 6. D->H copy: " << std::setw(7) << step6_ms << " ms\n";
418 output << " 7. Free GPU memory: " << std::setw(7) << step7_ms << " ms\n";
419 output << " GPU TOTAL: " << std::setw(7) << total_ms << " ms\n";
420
421 // Выводим всë одним принтом
422 printf("%s", output.str().c_str());
423 fflush(stdout);
424
425 *h_out_stats = h_stats;
426 *out_num_periods = num_periods;
427
428 return 0;
429 }
430
431 // ==
432 // Освобождение памяти результатов
433 // ==
434
435 extern "C" void gpu_free_results(GpuPeriodStats* stats) {
436 delete[] stats;
437 }

61

ПРИЛОЖЕНИЕ З

1 #include "intervals.hpp"
2 #include "utils.hpp"
3 #include <mpi.h>
4 #include <algorithm>
5 #include <cmath>
6 #include <fstream>
7 #include <iomanip>
8 #include <sstream>
9 #include <ctime>

10 #include <limits>
11
12 // Вспомогательная структура для накопления min/max в интервале
13 struct IntervalAccumulator {
14 PeriodIndex start_period;
15 double start_avg;
16 double open_min;
17 double open_max;
18 double close_min;
19 double close_max;
20
21 void init(const PeriodStats& p) {
22 start_period = p.period;
23 start_avg = p.avg;
24 open_min = p.open_min;
25 open_max = p.open_max;
26 close_min = p.close_min;
27 close_max = p.close_max;
28 }
29
30 void update(const PeriodStats& p) {
31 open_min = std::min(open_min, p.open_min);
32 open_max = std::max(open_max, p.open_max);
33 close_min = std::min(close_min, p.close_min);
34 close_max = std::max(close_max, p.close_max);
35 }
36
37 Interval finalize(const PeriodStats& end_period, double change) const {
38 Interval iv;
39 iv.start_period = start_period;
40 iv.end_period = end_period.period;
41 iv.start_avg = start_avg;
42 iv.end_avg = end_period.avg;
43 iv.change = change;
44 iv.open_min = std::min(open_min, end_period.open_min);
45 iv.open_max = std::max(open_max, end_period.open_max);
46 iv.close_min = std::min(close_min, end_period.close_min);
47 iv.close_max = std::max(close_max, end_period.close_max);
48 return iv;
49 }
50 };
51
52 // Упакованная структура PeriodStats для MPI передачи (8 doubles)
53 struct PackedPeriodStats {
54 double period; // PeriodIndex as double
55 double avg;
56 double open_min;
57 double open_max;
58 double close_min;
59 double close_max;
60 double count; // int64_t as double
61 double valid; // флаг валидности (1.0 = valid, 0.0 = invalid)

62

62
63 void pack(const PeriodStats& ps) {
64 period = static_cast<double>(ps.period);
65 avg = ps.avg;
66 open_min = ps.open_min;
67 open_max = ps.open_max;
68 close_min = ps.close_min;
69 close_max = ps.close_max;
70 count = static_cast<double>(ps.count);
71 valid = 1.0;
72 }
73
74 PeriodStats unpack() const {
75 PeriodStats ps;
76 ps.period = static_cast<PeriodIndex>(period);
77 ps.avg = avg;
78 ps.open_min = open_min;
79 ps.open_max = open_max;
80 ps.close_min = close_min;
81 ps.close_max = close_max;
82 ps.count = static_cast<int64_t>(count);
83 return ps;
84 }
85
86 bool is_valid() const { return valid > 0.5; }
87 void set_invalid() { valid = 0.0; }
88 };
89
90 IntervalResult find_intervals_parallel(
91 const std::vector<PeriodStats>& periods,
92 int rank, int size,
93 double threshold)
94 {
95 IntervalResult result;
96 result.compute_time = 0.0;
97 result.wait_time = 0.0;
98
99 if (periods.empty()) {

100 if (rank < size - 1) {
101 PackedPeriodStats invalid;
102 invalid.set_invalid();
103 MPI_Send(&invalid, 8, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD);
104 }
105 return result;
106 }
107
108 double compute_start = MPI_Wtime();
109
110 size_t process_until = (rank == size - 1) ? periods.size() : periods.size() - 1;
111
112 IntervalAccumulator acc;
113 size_t start_idx = 0;
114 bool have_pending_interval = false;
115
116 if (rank > 0) {
117 double wait_start = MPI_Wtime();
118
119 PackedPeriodStats received;
120 MPI_Recv(&received, 8, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
121
122 result.wait_time = MPI_Wtime() - wait_start;
123 compute_start = MPI_Wtime();
124
125 if (received.is_valid()) {

63

126 PeriodStats prev_period = received.unpack();
127
128 for (start_idx = 0; start_idx < periods.size(); start_idx++) {
129 if (periods[start_idx].period > prev_period.period) {
130 break;
131 }
132 }
133
134 if (start_idx < process_until) {
135 acc.init(prev_period);
136 have_pending_interval = true;
137
138 for (size_t i = start_idx; i < process_until; i++) {
139 acc.update(periods[i]);
140
141 double change = std::abs(periods[i].avg - acc.start_avg) / acc.start_avg;
142
143 if (change >= threshold) {
144 result.intervals.push_back(acc.finalize(periods[i], change));
145 have_pending_interval = false;
146
147 start_idx = i + 1;
148 if (start_idx < process_until) {
149 acc.init(periods[start_idx]);
150 have_pending_interval = true;
151 }
152 }
153 }
154 }
155 } else {
156 if (process_until > 0) {
157 acc.init(periods[0]);
158 have_pending_interval = true;
159 start_idx = 0;
160 }
161 }
162 } else {
163 if (process_until > 0) {
164 acc.init(periods[0]);
165 have_pending_interval = true;
166 start_idx = 0;
167 }
168 }
169
170 if (rank == 0 && have_pending_interval) {
171 for (size_t i = 1; i < process_until; i++) {
172 acc.update(periods[i]);
173
174 double change = std::abs(periods[i].avg - acc.start_avg) / acc.start_avg;
175
176 if (change >= threshold) {
177 result.intervals.push_back(acc.finalize(periods[i], change));
178 have_pending_interval = false;
179
180 start_idx = i + 1;
181 if (start_idx < process_until) {
182 acc.init(periods[start_idx]);
183 have_pending_interval = true;
184 }
185 }
186 }
187 }
188
189 if (rank == size - 1 && have_pending_interval && !periods.empty()) {

64

190 const auto& last_period = periods.back();
191 double change = std::abs(last_period.avg - acc.start_avg) / acc.start_avg;
192 result.intervals.push_back(acc.finalize(last_period, change));
193 }
194
195 result.compute_time = MPI_Wtime() - compute_start;
196
197 if (rank < size - 1) {
198 PackedPeriodStats to_send;
199
200 if (have_pending_interval) {
201 PeriodStats start_period;
202 start_period.period = acc.start_period;
203 start_period.avg = acc.start_avg;
204 start_period.open_min = acc.open_min;
205 start_period.open_max = acc.open_max;
206 start_period.close_min = acc.close_min;
207 start_period.close_max = acc.close_max;
208 start_period.count = 0;
209 to_send.pack(start_period);
210 } else if (periods.size() >= 2) {
211 to_send.pack(periods[periods.size() - 2]);
212 } else {
213 to_send.set_invalid();
214 }
215
216 MPI_Send(&to_send, 8, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD);
217 }
218
219 return result;
220 }
221
222 double collect_intervals(
223 std::vector<Interval>& local_intervals,
224 int rank, int size)
225 {
226 double wait_time = 0.0;
227
228 if (rank == 0) {
229 for (int r = 1; r < size; r++) {
230 double wait_start = MPI_Wtime();
231
232 int count;
233 MPI_Recv(&count, 1, MPI_INT, r, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
234
235 if (count > 0) {
236 std::vector<double> buffer(count * 9);
237 MPI_Recv(buffer.data(), count * 9, MPI_DOUBLE, r, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
238
239 for (int i = 0; i < count; i++) {
240 Interval iv;
241 iv.start_period = static_cast<PeriodIndex>(buffer[i * 9 + 0]);
242 iv.end_period = static_cast<PeriodIndex>(buffer[i * 9 + 1]);
243 iv.open_min = buffer[i * 9 + 2];
244 iv.open_max = buffer[i * 9 + 3];
245 iv.close_min = buffer[i * 9 + 4];
246 iv.close_max = buffer[i * 9 + 5];
247 iv.start_avg = buffer[i * 9 + 6];
248 iv.end_avg = buffer[i * 9 + 7];
249 iv.change = buffer[i * 9 + 8];
250 local_intervals.push_back(iv);
251 }
252 }
253

65

254 wait_time += MPI_Wtime() - wait_start;
255 }
256
257 std::sort(local_intervals.begin(), local_intervals.end(),
258 [](const Interval& a, const Interval& b) {
259 return a.start_period < b.start_period;
260 });
261 } else {
262 int count = static_cast<int>(local_intervals.size());
263 MPI_Send(&count, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
264
265 if (count > 0) {
266 std::vector<double> buffer(count * 9);
267 for (int i = 0; i < count; i++) {
268 const auto& iv = local_intervals[i];
269 buffer[i * 9 + 0] = static_cast<double>(iv.start_period);
270 buffer[i * 9 + 1] = static_cast<double>(iv.end_period);
271 buffer[i * 9 + 2] = iv.open_min;
272 buffer[i * 9 + 3] = iv.open_max;
273 buffer[i * 9 + 4] = iv.close_min;
274 buffer[i * 9 + 5] = iv.close_max;
275 buffer[i * 9 + 6] = iv.start_avg;
276 buffer[i * 9 + 7] = iv.end_avg;
277 buffer[i * 9 + 8] = iv.change;
278 }
279 MPI_Send(buffer.data(), count * 9, MPI_DOUBLE, 0, 2, MPI_COMM_WORLD);
280 }
281 }
282
283 return wait_time;
284 }
285
286 std::string period_index_to_datetime(PeriodIndex period) {
287 int64_t interval = get_aggregation_interval();
288 time_t ts = static_cast<time_t>(period) * interval;
289 struct tm* tm_info = gmtime(&ts);
290
291 std::ostringstream oss;
292 oss << std::setfill(’0’)
293 << (tm_info->tm_year + 1900) << "-"
294 << std::setw(2) << (tm_info->tm_mon + 1) << "-"
295 << std::setw(2) << tm_info->tm_mday << " "
296 << std::setw(2) << tm_info->tm_hour << ":"
297 << std::setw(2) << tm_info->tm_min << ":"
298 << std::setw(2) << tm_info->tm_sec;
299
300 return oss.str();
301 }
302
303 void write_intervals(const std::string& filename, const std::vector<Interval>& intervals) {
304 std::ofstream out(filename);
305
306 out << std::fixed << std::setprecision(2);
307 out << "start_datetime,end_datetime,open_min,open_max,close_min,close_max,start_avg,end_avg,change\n";
308
309 for (const auto& iv : intervals) {
310 out << period_index_to_datetime(iv.start_period) << ","
311 << period_index_to_datetime(iv.end_period) << ","
312 << iv.open_min << ","
313 << iv.open_max << ","
314 << iv.close_min << ","
315 << iv.close_max << ","
316 << iv.start_avg << ","
317 << iv.end_avg << ","

66

318 << std::setprecision(6) << iv.change << "\n";
319 }
320 }

67

ПРИЛОЖЕНИЕ И

1 #include "utils.hpp"
2 #include <fstream>
3 #include <sstream>
4 #include <stdexcept>
5 #include <numeric>
6
7 int get_num_cpu_threads() {
8 const char* env_threads = std::getenv("NUM_CPU_THREADS");
9 int num_cpu_threads = 1;

10 if (env_threads) {
11 num_cpu_threads = std::atoi(env_threads);
12 if (num_cpu_threads < 1) num_cpu_threads = 1;
13 }
14 return num_cpu_threads;
15 }
16
17 std::string get_env(const char* name) {
18 const char* env = std::getenv(name);
19 if (!env) {
20 throw std::runtime_error(std::string("Environment variable not set: ") + name);
21 }
22 return std::string(env);
23 }
24
25 std::string get_data_path() {
26 return get_env("DATA_PATH");
27 }
28
29 std::vector<int> get_data_read_shares() {
30 std::vector<int> shares;
31 std::stringstream ss(get_env("DATA_READ_SHARES"));
32 std::string item;
33 while (std::getline(ss, item, ’,’)) {
34 shares.push_back(std::stoi(item));
35 }
36 return shares;
37 }
38
39 int64_t get_read_overlap_bytes() {
40 return std::stoll(get_env("READ_OVERLAP_BYTES"));
41 }
42
43 int64_t get_aggregation_interval() {
44 return std::stoll(get_env("AGGREGATION_INTERVAL"));
45 }
46
47 bool get_use_cuda() {
48 return std::stoi(get_env("USE_CUDA")) != 0;
49 }
50
51 int64_t get_file_size(const std::string& path) {
52 std::ifstream file(path, std::ios::binary | std::ios::ate);
53 if (!file.is_open()) {
54 throw std::runtime_error("Cannot open file: " + path);
55 }
56 return static_cast<int64_t>(file.tellg());
57 }
58
59 ByteRange calculate_byte_range(int rank, int size, int64_t file_size,
60 const std::vector<int>& shares, int64_t overlap_bytes) {
61 std::vector<int> effective_shares;

68

62 if (shares.size() == static_cast<size_t>(size)) {
63 effective_shares = shares;
64 } else {
65 effective_shares.assign(size, 1);
66 }
67
68 int total_shares = std::accumulate(effective_shares.begin(), effective_shares.end(), 0);
69 int64_t bytes_per_share = file_size / total_shares;
70
71 int64_t base_start = 0;
72 for (int i = 0; i < rank; i++) {
73 base_start += bytes_per_share * effective_shares[i];
74 }
75
76 int64_t base_end = base_start + bytes_per_share * effective_shares[rank];
77
78 ByteRange range;
79
80 if (rank == 0) {
81 range.start = 0;
82 range.end = std::min(base_end + overlap_bytes, file_size);
83 } else if (rank == size - 1) {
84 range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));
85 range.end = file_size;
86 } else {
87 range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));
88 range.end = std::min(base_end + overlap_bytes, file_size);
89 }
90
91 return range;
92 }
93
94 void trim_edge_periods(std::vector<PeriodStats>& periods, int rank, int size) {
95 if (periods.empty()) return;
96
97 if (rank == 0) {
98 periods.pop_back();
99 } else if (rank == size - 1) {

100 periods.erase(periods.begin());
101 } else {
102 periods.pop_back();
103 periods.erase(periods.begin());
104 }
105 }

69

ПРИЛОЖЕНИЕ К

1 #pragma once
2 #include <cstdint>
3
4 using PeriodIndex = int64_t;
5
6 // Агрегированные данные за один период
7 struct PeriodStats {
8 PeriodIndex period; // индекс периода (timestamp / AGGREGATION_INTERVAL)
9 double avg; // среднее значение (Low + High) / 2 по всем записям

10 double open_min; // минимальный Open за период
11 double open_max; // максимальный Open за период
12 double close_min; // минимальный Close за период
13 double close_max; // максимальный Close за период
14 int64_t count; // количество записей, по которым агрегировали
15 };

70

ПРИЛОЖЕНИЕ Л

1 #pragma once
2 #include <cstdint>
3
4 struct Record {
5 double timestamp;
6 double open;
7 double high;
8 double low;
9 double close;

10 double volume;
11 };

71

	ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
	ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ
	ВВЕДЕНИЕ
	ПОСТАНОВКА ЗАДАЧИ
	ОСНОВНАЯ ЧАСТЬ РАБОТЫ
	Создание виртуального кластера
	Конфигурация пакетов
	Конфигурация сети
	Конфигурация ресурсов GPU
	Конфигурация NFS
	Конфигурация slurm
	Конфигурация munge
	Конфигурация OpenMPI
	Постановка задачи и прототип решения
	Параллельная реализация на CPU
	GPU-ускорение агрегации данных
	Конфигурация через переменные окружения
	Структура проекта

	ЗАКЛЮЧЕНИЕ
	Список литературы
	ПРИЛОЖЕНИЕ А
	ПРИЛОЖЕНИЕ Б
	ПРИЛОЖЕНИЕ В
	ПРИЛОЖЕНИЕ Г
	ПРИЛОЖЕНИЕ Д
	ПРИЛОЖЕНИЕ Е
	ПРИЛОЖЕНИЕ Ж
	ПРИЛОЖЕНИЕ З
	ПРИЛОЖЕНИЕ И
	ПРИЛОЖЕНИЕ К
	ПРИЛОЖЕНИЕ Л

