MUHUNCTEPCTBO HAVKU 1 BBICIHEI'O OBPASOBAHIA
POCCUNICKON ®EIEPAIINN
deepanbHOe TOCYIAPCTBEHHOE aBTOHOMHOE 00pa30BaATEIbHOE YIPEXKIeHIE
BbICHIEro oopasoBanust «CankT-IleTepOyprekuii MoINTeXHUIECKHit
yausepcuteT [lerpa Benukoro»

HCeTuTyT KOMIBIOTEPHBIX HAYK U KuOepOe301macHOCTH
Berciast mkoJia TeXHOJIOTNNH NCKYCCTBEHHOI'O MHTEJIJIEKTa

Hamnpasnenne: 02.03.01 MaTtemaTnka n KOMIIbIOTEPHbIE HAYKN

«ApPXUTEKTYPa CyHEePKOMIIBIOTEPHBIX CHCTEM»
OT4yer 10 BBINOJIEHUIO J1a00PATOPHOI pabOThI

Bapuant 18
Crynenr,
rpymmst 5130201/20101 Tumenko A. A.
[TpenonaBaTen Yysaros M. B.

« » 2026r.

Camnkr-IlerepOypr, 2026

PEDOEPAT

I'ETEPOI'EHHBIE BEIYNCJ/INTEJIBHBIE CUCTEMBI, ITAPAJIJIEJIbBHOE BBI-
YUCJIEHNE, MPI, GPU-BBIUNCJIEHN A, OPENMPI, HYPER-V, CUDA, BPEMEH-
HBIE PAJIBI, ATPET'ALINA TAHHBIX.

OOBEKTOM HCCIIeIOBAHNS B TEKYINEH paboTe ABJISIETCA TeTePOreHHbI BbIIUC/INTE h-
Hbli Kaactep, ucnosblytomuit pecypcbl GPU u CPU Bpramciuresteit. Tak Kaxk pecypcbl
PU3TIECKUX CyNEPKOMIIBIOTEPHBIX CUCTEM 3a9acTyIO He JIOCTYITHBI, KJIaCTEp TAKOIro Pojia
CAMOCTOSITEJILHO CO3JIACTCsI C MCIOJIb30BAHUEM JIOCTYIIHBIX BBIYHCJIUTEIbHBIX PECYPCOB.
[Hesbi0 paboOTHI gBJIAETCA CO3/IaHNE, HACTPONKA M TECTUPOBAHUE BBICOKOIIPOU3BOINTEThb-
HOT'O BBIMHC/IUTE/IHHOTO KJIACTEPa, CIOCOOHOr0 3(h@PEKTUBHO BBIMOJHATD 3a/a49U TapaJl-
JIEJIHBIX BBIYUC/IEHUI C UCIIOTB30BAHUEM PA3HOPOIHBIX alllapaTHBIX PECYPCOB.

B paspaborannoii cucremMe BOCCO3IaeTCA OKPYKEHHUE CYyHNEPKOMIIBIOTEPHOI'O BBIMHC-
JITEJIsl, UCTIOJB3YOIIEro pasHble Y3JIbl (BUPTYyaJbHbIe MAIINHbI) U KoHMUryparuio slurm.

Ha 0Gasze peasim3oBaHHOIrO KjacTepa pas3padboTaHO NapaJiiebHOe INPUIOKEHUE, HC-
nostb3ytotee TexHosiorun CUDA u OpenMPI, BoimosHstiomee anain3 BpeMeHHbBIX PsiIOB
HCTOPUIECKHUX JAHHBIX O CTOUMOCTH Bitcoin ¢ 11e/1b10 BbIAB/IEHNsST HTHTEPBAJIOB 3HAUNTE -
HOI'O M3MEHEHUs 1IeHbl Ha OCHOBE arperupoBaHHbBIX JTHEBHBIX CTATUCTUK.

Conepkanue
TEPMUHBI 1 OIIPEJAEJIEHI S
IIEPEYEHb COKPAIIIEHUI 1 OBO3HAYEHUN
BBEJJIEHIUE
IIOCTAHOBKA 3AJTAYU

1 OCHOBHAZ4A YACTDHb PABOTHI
1.1 Cozyanue BUPTYATbHOTO KIACTEDPA .« « « « o o o v v e v e e e e e e e e e
1.2 KoHQUIYPAIHT TAKETOB . . & v v v v v v v e e e e e e e e e e e e e e e
1.3 KoHdurypamus ceTro e e e
1.4 Koudwurypamus pecypcos GPUo o000
1.5 Koudwurypamma NFS o
1.6 Koudwurypamus slurmo
1.7 Koudurypaus mungeo e e e e
1.8 Kondwurypamusa OpenMPI
1.9 TlocranoBka 3a/1a9u U MPOTOTUIT PEIIEHUS . . . « « o « o o o o v o o o o o .
1.10 IMapamnenbnas peanusarnus va CPU 0.0 ...
1.11 GPU-yckopenne arperamy JAHHBIX « o o o o v oo v oo e o oo o
1.12 Kondwurypanus depe3 mepeMeHHble OKPYKEHIA « o o o o o o o o . .
1.13 CTpyKTypa MPOEKTA . .« v v v v v e e e e e e e e e e e e e e

SAKJIFOYEHUE
Crucok jaureparyphbl
IMPNJIO2KEHUE A
IMPNJIO2KEHUE B
IMPNJIO2KEHUE B
IMPNJIO2KEHUE T’
IMPNJIOZKEHUE /1
IMPNJIOZKEHUE E
IMPNJIOZ2KEHUE 2K
IMTPNJIOZ2KEHUE 3
IMPNJIOZKEHUE "N
IMPNJIOZKEHUE K

IMTPMNJIO2KEHUE JI

42

43

44

45

47

50

52

55

62

68

70

71

10.

11.

12.

13.

TEPMUWHDBI N OINPEJAEJIEHN A

. FeTepOI‘eHH])Ie BbIINCJINTEJIbHbIE CUCTEMbI — 3JICKTPOHHBLIE CUCTEMBI, UCIIOJIb-

3YIOIIIE PA3INIHBIE TUIBI BEITUCTUTEIBHBIX 0JI0KOB. OHI TIO3BOJISIOT 3(hhDEKTUBHO
pelrarhb 3a/la4d 3a CUYET UCHOJIB30BAHUSA KOMIIOHEHTOB C PA3JIMYHBIMU apXUTEKTY-
pamu.

. GPU (Graphics Processing Unit) — rpadwuteckuii nporeccop, mpeHa3HatdeH-

HBII JI719 TapaJIeIbHON 00pabOTKM JJAHHBIX, 0COOEHHO 3(DPEKTUBEH JIJ1s1 BHIYUC/TE-
HU# C BBICOKOH CTEIICHBIO IapaJljIe/In3Ma.

. CPU (Central Processing Unit) — nenrpasbHblii iporieccop obIero HasHade-

HMA, OHTI/IMI/ISI/IpOBaHHbIIZ IJId I10CJIe JOBAaTE/IbHbIX BBIYMCJIEHU.

. Hyper-V — rexnosyiorus upryanusamnun ot Microsoft, mosBosisiiomast co3aBaThb

U yIPaBJIATh BUPTyaJbHbIME MalnHaMu Ha Windows.

. NFS (Network File System) — nporoko cereBoii (hailjIoBOil CHCTEMBI, TO3BO-

JITIOINI pa3eadaTh JaHHbIe MEXKY y3JaMHu KJIacTepa.

. MPI (Message Passing Interface) — crangapr B3anmMojeficTBus MKy mpo-

neccaMu B ITapaJiJIeJIbHBIX BbIMUCJ/IUTEJIbHBIX CUCTEeMaX.

. Slurm — MeHeKep PECypCcoB U IIAHUPOBIINK 33029 IS KJIACTEPHBIX CHCTEM.

. Konreitnepusanmss — TeXHOJIOTUSA BUPTYaJIU3aIlUNA, KOTOPasi MO3BOJIAET W30JIU-

pPOBAThb IPOrpaMMHOE ObecIieueHne B KOHTeHePax I MOBBIIIIEHNs TIEPEHOCUMOCTH
U ycTpaHeHus KOH(MJIUKTOB BEPCHil.

. CUDA (Compute Unified Device Architecture) — nporpammuasi mrargop-

ma oT NVIDIA s pazpaboTku mapaJiie/TbHbIX TPUIOKEHN Ha TPadUIeCKIX IPOo-
IEeCCOpax.

OpenMPI — BricokornpousBoure/ibHas peanusarus crangapra MPI, obecriewdn-
BalOIasi B3ANMOJEICTBIE MEXKIY MPOIECCAME B PACIIPEJIC/IEHHBIX CUCTEMAaX.

MUNGE — uncrpyMeHT ayTeHTUMUKAINN, UCIIOJIB3YEeMbIil /st obeciieuenns 6e3-
OIIACHOCTH B BBIMUCJIUTE/ILHBIX KJIACTEPAX.

Rank — wmnentudukarop mporecca B cucreme MPI, ucnonbsyembrit jiig onpejie-
JIEHUSI POJIU TIPOIIECCa.

MPI_ Send, MPI Recv — dynxmun MPI 11 oTipasku u nojrydenus JaHHbIX
MEZKJTY TTPOIECCAMH.

SA

10.
11.
12.

13.

I[TEPEYEHBH COKPAIIIEHUN "
OBO3HAYEHII

. GPU — Graphics Processing Unit (rpadudeckuii mporeccop).

CPU — Central Processing Unit (mieHTpasibHbIii mporeccop).
NFS — Network File System (cereBas daitioBas cucrema).
MPI — Message Passing Interface (narepdeiic mepemadun coobieHmit).

Slurm — Simple Linux Utility for Resource Management (yruiura ynpasienust
pecypcamu jiist Linux).

CUDA — Compute Unified Device Architecture (ejuHast apxuTeKTypa BbITHCIIE-
uuit or NVIDIA).

. OpenMPI — Open Message Passing Interface (peasnnsanus unrepdeiica nepejgain

COOOTIEeHMIA).

. MUNGE — MUNGE Uid 'N’ Gid Emporium (uHCTpYMEHT ayTeHTUDUKAIUY JJIsk

KJIACTEPOB).

. HPC — High-Performance Computing (BbICOKOIIPOU3BOIUTETHHbBIE BHIUUCICHNUSA).

SSH — Secure Shell (6esonacuast 0601049Ka).
RAM — Random Access Memory (omeparuBaasi HaMsITh).

TCP/IP — Transmission Control Protocol/Internet Protocol (mporokosn ynpas-
JIeHUs 1epe/iadeil/ THTePHeT-1TPOTOKOI).

OS — Operating System (omepallioHHasi cucTeMa).

BBE/IEHNE

UcnonbzoBanne rpadudeckux yckopureneil (GPU) Hapsiy ¢ meHTpaabHBIMEA 1TPO-
neccopamu (CPU) gasiercss pacnpocTpaHeHHON HPAKTHKOM B 00JIACTH MapaJliebHbIX
BBIUHCJIEHNI Ha TeTePOreHHBbIX ItaTdopMax. ['eTeporeHHble BBIYNCIUTEIbHBIE CHCTEMBI
00 BEIMHSIIOT PA3JIMIHbIE THUIILI BBIUYUC/IUTEIbHBIX OJIOKOB, UTO I103BOJIsIeT 3D PEKTUBHO
perarh 3aJa4u, BbIOUpas ONTUMAJILHBIN BLIYUCIUTETBLHBIN PECype i KayKJIOoro dTara
00pabOTKM JTaHHBIX.

GPU u CPU umeror pasjnanyio apxuTeKTypy U U3HAYAILHO TPOEKTUPOBAIUCE JIJIsT
perennsi pasHbix KjaccoB 3agad. GPU obnamgaer OOJNBITNM KOJIMIECTBOM IIPOCTHIX BbI-
YUCUTE/IBHBIX SIJIEP, ONTUMH3UPOBAHHBIX JIJIsT MACCOBO-TIAPAJIIETBHBIX OIEePaInii, B TO
Bpems kak CPU mmeer menbIre sijiep, HO ¢ Oojiee CJIOKHON JIOTUKOW W JIydIeil mpomns-
BOJUTEIHLHOCTHIO Ha o1HO sapo. CoBmecTHoe ucnonb3oBanne GPU u CPU ocnoxusercs
PAIOM 0COOEHHOCTEl: OHM MMEIOT pa3/esIbHYI0 MaMsTh, pa3INYHble a/IpeCHbIE TPOCTPAH-
CTBa, U JIJId [TePeJIavdn JTaHHbIX TpeOdyeTcsd siBHOE KOIMMPOBAaHUE Yepe3 CUCTEMHBIE BBISOBBI.
O/ iHaKo 1pu MpaBUJILHOM PacHpee/IeHIH 3a/1a1 U POCTe 00bEMA JTAHHBIX UCIOJIHL30BaAHUE
GPU moxker 3HAUNUTENIBHO YCKOPUTDH BBIUUCICHUS.

Obecrieuenne B3aUMOJECHCTBUS MEXKJY y3JaMU BBIMUC/IUTEIHLHOIO KJIACTEPA OCY-
mecTBisieTcs ¢ momornsio Message Passing Interface (MPI) — crangapra nepenadn coo6-
meHunit Mexk 1y mporeccamu. OcaoBHbIMEU peasmsariusyu siisgores Open MPI u MPICH,
KOTOPBIE MTO3BOJIAIOT TIPOIEccaM CHHXPOHU3UPOBATHCS U OOMEHUBATHCSA JTAHHBIMA.

st GPU-Bbranciennit uCmosib3yorces ClenuaIn3npOBAHHbIC TEXHOIOTUH, TAKIE KaK
CUDA (ma yerpoiicts NVIDIA), ROCm (ms yerpoiicrs AMD) u OpenCL (kpoccrmiat-
dbopmennsiit cranmapr). B namnmoit pabore ncmnosnssyercas CUDA Toolkit u 6ubamoreka
CUB nya sdbdekTuHOl napasieabHoit 00padorku janabix Ha GPU.

B kauecTBe orepaliionHo#l CUCTEMbI B BBIMUC/IUTEIHHBIX KJIACTEPAX TPAJIUIIMOHHO UC-
noJIb3yI0TCd Linux-1uctpubyTuBsl O/1arogaps uX MPOU3BOJIUTETLHOCTH, OTKPBITOCTH UC-
XOJTHOTO KOJa W IMHUPOKOM MOJIePKKe HEeOOXOIMMBIX TeXHOJIOruil. B pamkax Tekyreit
paboTel ucnosbdyercs Ubuntu Server Ha BUPTyabHBIX MAITHHAX.

Joctyn K dusnaecknM CynepKOMITBIOTEPHBIM CHUCTEMAaM He BCerja BO3MOXKEH, I10-
9TOMY JIJIsi pa3pabOTKH, TECTUPOBAHUSA W OTJIAJKU MMapaJLIebHBIX PUIOYKEHUN IIeIeco-
obpa3Ho co3jlaHne cCOOCTBEHHOI'O BUPTYAJILHOTO KjacTepa. B mannoit pabore ucrosb3yer-
cqa texnosiorus Bupryasmsanun Hyper-V, pazpaborannas Microsoft, kotopas mozsossier
CO3JIABATH U YIPABJIATL BUPTYAJIHHBIMU MaIllMHAMU C BO3MOXKHOCTBIO mpobpoca GPU-
pecypcos. [2]

Bajiaua aHa/M3a BPEMEHHBIX PSIIOB OOJIBITNX 00BEMOB JIAHHBIX SIBJISETCS XOPOIIIM
PUMEPOM JIJIsi JIeMOHCTpaIrun 3(hMOEKTUBHOCTH MapaJlie/IbHbIX BBIYUC/ICHUN Ha TeTe-
porennbix cucremax. O6paboTKa MCTOPUIECKUX JAHHBIX O CTOUMOCTU KPHUIITOBAJIOTHI
Bitcoin BkjogaeT omnepaluu dTeHusi 60JbIMNUX (ail/ioB, arperamun JaHHBIX M0 BPEMEH-
HBIM MHTepBAJIaM U MOWCKa MTaTTEePHOB M3MEHEHUs IeHbl — 3aJ/Ia9l, KOTOPbIe €CTeCTBEH-
HBIM 00Pa30M IOJJIAIOTCH paclapaIeIMBAHAI0 MEXK/Iy y3JaMU KJIacTepa U YCKOPEHUIO
na GPU.

Hesnbio ranHON pabOTHI sIBJISETCs CO3/IaHUE BUPTYAJIHLHOIO M€TEPOTeHHOIO BbIMUC/IU-
TEJILHOT'O KJIacTepa U pa3paboTKa MapasiIeIbHOTO IIPUIOXKEHUs JIJIs aHAJIIN3a BPEeMEHHBIX
psoB ¢ 3ddexkTuBHbIM ucHoIb30BanneM pecypcoB kak CPU, tak u GPU y3ioB.

ITOCTAHOBKA 3AJAYUAN

B pamkax jrabopaTopHbIX paboT HEOOXOIUMO BBIIOJHUTD CJIEIYIOIINE 33/ H:
1. CO3,H&HI/I€ BUPTYaJIbHBIX MalllUH C Pa3HOPOAHBIMU TUIIaMHW BbBIYUCJ/IUTEJIBHBIX PeE-
CYPCOB:

e CPU-yszbr;
o GPU-yzimI.

2. HaCTpOﬁKa CEeTU JIJId CBA3U XOCT-CUCTEMBI U BUPTYaJIbHBIX Y3JIOB;

3. Pemmenne 3a/1aum 10 BBIODAHHOMY BapHaHTY:

e Heobxoumo paszpaborarh mapaJiiebHOe IPUIOKEeHNE, 3a/1efiCTBYIOIIEE BbI-
qncsmreababie pecypebl CPU-y3m08 1 CUDA-y3/10B, UCIIOIB3YST MEXaHI3M
OpenMPI, BermosHsIIoIEe Ha MIPeI0CTABIEHHOM HADOPE JAHHBIX CJIE/IYIOIIIe
neficTBus. 3aj1ada pa3buTa Ha 2 dTara, KOTOpble HEOOXOINMO BBIOJIHATS,
UCIIOJIb3YSl PA3HOPOJIHBIN THII BHIUYUC/IATEILHBIX PECYPCOB;

e Dram 1. Arperamnust JaHHBIX: JIJIsT BDEMEHHOTO Psi/ia, MCTOPUIECKUX JTAHHBIX
o croumoctu Bitcoin (ucxomuble jaHHbIe coepKaT HHGOPMAIIUIO M0 KazK-
M 10 cekyHaM) HEOOXOIMMO BBIIOJHUTH IPYIIUPOBKY 10 JIHAM U JJisI
KasKJIOTO JHS BBIYUCJIMTL CPEIHIOID IEeHY KaK MaTeMaTHIeCKOe OXKHUIAHUE
snadennit Low u High, a Tak:ke MuHHMaJIbHBIE U MaKCHMAaJIbHbIE 3HATCHUS
Open u Close.

e Dram 2. [lonck nHTEpBAIOB NU3MEHEHUS IIEHBI: HA OCHOBE JTHEBHBIX arperupo-
BAHHBIX JIAHHBIX HEOOXOJNMO BBISIBUTH MHTEPBAJIBI AT (HAUMHAS C HAYATb-
HOI J1aThl B HaOOpe JaHHBIX), B KOTOPBIX CPEJIHsIA JTHEBHAS IEHA W3MEHU-
Jach He Menee yeM Ha 10% oTHocuTeIbHO Havdasa MHTEpBasa. Jlist Kaski0ro
UHTepBaJia HeOOXOIMMO BBIBECTH HAYAJbHYIO U KOHEYHYIO JIAThI, a TaKXKe
MUHUMaJIbHBIE U MakcuMaJibabie 3nadenus Open u Close 3a Bce JIHU BHYTPHU
HHTEpBaJA.

Daitr ¢ MCXOTHBIMU JIAHHBIMU JIOCTYTIEH B CBOOOJHOM JIOCTYIE B ceTu uHTepHeT|1].

1 OCHOBHAZ{ YACTDH PABOTDI

1.1 Co3ganne BUPTyaJbHOIo KJjacTepa

B pamkax s1abopaTopHoii paboTbl HEOOXOIMMO CO3/IaTh BUPTYaJIbHBIN BHIUUC/IATE b=
HBII KJIacTeP, UCIOJIb3YIomuit pasnopo bl Bu Beraucaureneit: GPU u CPU. B pamkax
JIabopaTOPHOI pabOThl HEOOXOIUMO CO3/IaTh BUPTYya/IbHbIE MAIIUHBI UCIIOJIb3YsI HATUBHBIN
MexXaHn3M arnmapaTtHoit Bupryaan3amnun Windows: Hyper-V.

B kadectBe 0o0111eit KoHUTYpaIul BUPTYaJIbHON MaIIUHBI BHIOPAHBI CJIEIYIONINE TIa-
paMeTphbl:

Ubuntu Server 22.04.05 LT'S;

e BoieseraHoe O3Y: 4096 MB;
® UIICJIO BUPTYaJbHBIX IIPOIECCOPOB: 2;

e ums Bupryasbhoil Mamuabl: "tishcpuX "tishgpuX" (X - Homep y3ia).

Coznanne BUPTyaJdbHOI MaNINHBI

st cosmanus BUpTyasbHON MamuHbl (y31a) i OyayIero Kiaacrepa, HeoOXOAuMO
BBIIIOJIHUTD CJIEJIYIONINE T1aru:

1. Orkpoite " ducneraep Hyper-V".
2. OTkpeiTh MeHIO Jiist cepiepa (B rexkymieit pabore cepsep: XSPMAIN).

3. Beiopars "Coznars"— "Bupryanbnas mammaa...". [lisg macrepa cospanust Bup-
TyaJIbHOM MAIUHBI BLIOPATH CJIEJIYIONINE [TapaMeTPhL:
(a) "VkaxkuTe UM U MECTAHOXOXKjieHue"

e mga: "tishcpul";

e CoxpaHUTh BUPTYaJbHYIO MAIIIHY: V:\ Virtual machines.
(b) "Vkaxkure mokoserue"

e Buibpars "lloxoserue 2" (/lasee sror mapamerp MOMEHSTH HEBO3-
MOZKHO).

(c) "Beigenurs namsaTs":

o "[lamsaTh, BoIIEIsIEMOe TTpH 3arrycke': 4096 ME;

e "llcriosib30BaTh it 9TOW BUPTYAJLHON MAITUHBI JIUHAMUYECKYIO T1a-
MATh'": CTaBUM TaoOUuKy.

(d) "Hacrpoiika cetn": moka JaHHBIi pa3/ies MPOCTO MPOIYCKAETCS.
(e) "IomkmoYnTh BUPTYAIbHBIN KeCTKUiT anuckK":

o "Nma": tishcpul.vhdx;
e "Pacnosoxkenne": V:\Virtual machines\Virtual Hard Disks\;
e "Pasmep": 100 TB.

(f) "Ilapamerps! ycranoBku":

e "YCTAaHOBUTH OIEPAIMOHHYIO CUCTEMY U3 3arPy309HOTO obpa3a': BbI-
bupaeMm 1yTh K *.1iso daity obpaza OC.

[Tocste co3manust BUPTYAJIBHON MAIIMHBI HEOOXOIMMO HACTPOUTH MAPAMETPhI:
1. B crnmcke BUpTYyabHBIX MAIUH B KOHTEKCTHOM MeHIO BeIOpaTh "llapamerpsr...".
2. Jlaytee HEOOXOIMMO HACTPOUTD CJIE/LYIOIIE TTapaAMEeTPhI:
e "IIpomeccop"—"Hucmo BUpTyaabHBIX MPOIeccopoB': 2;
e "Bezomnacnocts" — "BrounTs 6e3omacuyio 3arpy3ky': He cTaBuM ranouxy;
e "SCSI-xouTpostep": DVD-muckoBo/;
e "Ceresoii aganrep" —"Bupryanpubiii kommyTtarop": Default Switch;
¢ "ApTomarmdeckoe JeficTBrue npu 3amycke': Hugero;
o "[Tamars"—"BkiouuTs quHaMudeckyio namaTh": He cTaBuM rajiodxy.
3. Haxarp "llpumennts"—"Ox".
st yeranosku OC HEOOXO MO 3aIyCTUTD CO3AHHYO PaHee BUPTYAJIbHYIO MAIIUHY.

s sToro neodxoumo vyepe3 Koncoib juctierdepa Hyper-V u zamycrurs ee:

VYcranoska OC

[Ipu ycrarnoske OC BBIIOJIHSIIOTCS CAEIYIOIINE IIari:

1. Buibop a3bika: "English".

2. Jliig packJiaJIKu BeIOUpaeM Ipe/iyiaraeMyo aHIJINHCKYIO PacK/IaIKy.
3. Tumn ycranoBku: "Ubuntu Server".

4. HacTpoiiku ceTu 1oKa He TPOraeM.

5. Hactpoiiku mpocTpancTBa HaMsATH:

(a) Beibupaem onmuro: "Custom Storage Layout".
(b) st Hamiero cBOGOJHOTO MPOCTPAHCTBA: 3aBOJUM SWap U OCHOBHOE IPO-
crpancTBo namaru. (Pasmepsr 50 u 4 I'B)

6. HacrpamBaem mapameTpbl IpOMUIsST CHCTEMBI:

e "Your name": ums (Hampumep: Arity);
e "Your server’s name": tishcpul (Kak y BUPTYaJIbHOIT MAIIMHEI);
e "Pick a username": arity;

e [laposb BeIOMpaeTcd Ha CBOE YCMOTPEHHE.

9

COB,ZLa.HI/Ie IIOJIb30BaTeJid root

[Ipu co3mannu BUPTYaIbHON MAIIMHBI, He OBLIT CKOH(MDUTYPUPOBaH 0/I630BATE/b OOt
Jlist ero cozmaHusi HEOOXOIMMO BBITIOJIHATD CJIEIYIONINE KOMAHIbI:

1 aritytishcpui:~$ sudo su -
2 root@tishcpul:~# passwd
3 # Komburypamusa mapojs AJis IOJIb30BaTeNd root

1.2 Konadurypaius nmakeToB

B pamkax JjrabopaTopHoii paboThl HEOOXOUMO YCTAHOBUTD CJIEIYIOIINE ITaKeThI:

e libopenmpi3 - naker jyis 6ubsmorekn Open MPI;

ShHXHd-—HaKeT,HHHﬁpraBHHRHHGHDBaﬂaanH,HeMOHa;

openssh-client - kyimentT OpenSSH;
e openssh-server - cepsep OpenSSH.

i1t 9TOT0 HEOOXOIMMO BBITIOJIHUTE CJIEJLYIOINE KOMAH/IbI:

aritytishcpul:~$ sudo apt update
aritytishcpul:~$ sudo apt upgrade
aritytishcpul:~$ sudo apt install libopenmpi3
aritytishcpul:~$ sudo apt install slurmd
aritytishcpul:~$ sudo apt install openssh-client
aritytishcpul:~$ sudo apt install openssh-server

N OO T W~

aritytishcpul:~$ sudo apt clean
3]

1. apt update - OOHOBIISIET JIOKAJLHBIN MHJEKC ITAKETOB B CHCTEME, CKAuMBas aK-
TyaJIbHYI0 HH(MOPMAIMIO O JIOCTYIHBIX ITAKETaX W3 PEINO3UTOPUEB, YKA3aHHBIX B
daittax /etc/apt/sources.list u /etc/apt/sources.list.d/. 910 HyKHO I
toro, 4To0bl OC 3Ha/Ia 0 HOBBIX BEPCUSX MAKETOB U MX 3aBUCUMOCTSIX.

2.apt upgrade-—o6HOBﬂﬂeT YCTaHOBJICHHBIE IIaKETbI B CHCTGMG.IIpeﬂBapHTeHbHO
peKOMEHﬂyETCﬂ,O6HOBHTb JIOKaJIbHBIC NHICKCHI IIaKETOB B CHCTEME.

3. apt install <name> - ycTaHaBJIMBaeT B CUCTeMe IAKET ¢ UMeHeM <name>.

4. apt clean - yjaJjser Bce 3arpy:KeHHbIe apxXuBbI akeToB u3 Kerma APT, ocBoboXK-
Jlasl MECTO Ha JIUCKeE.

HacTtpoiika ceTu Ha BUPTYyaJbHOII MallliHe

Jl1s1 HaCTpOMKY ceT Ha BUPTYAJIBHBIX MalliHAX HEOOXOMMO HACTPOUTH CJIeIYIOIINe
daitibr:

1. /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg - orkiouenue ynpas-
JIEHHUSI CeTEeBhIMU HacTPoiKaMu depe3 cloud-init, 9To0OBI HCIOIB30BATH JPYTHAE CIIO-
cOOBbI KOH(UTYPAIIUH CETH HA CUCTEME.

10

1
2

OO W

2. /etc/netplan/50-cloud-init.yaml - ucnoyb3yercs Jjisd KOH(PUTYPAIIUHA CETEBBIX
HACTpoeK B cucreme depe3 cloud-init, u oObIMHO reHepUpPyeTCs aBTOMATUYIECKH B
00JTAYHBIX OKPY2KEHUAX JIJIs HACTPONKY ceTH 1pu 3airycke. OHAKO IIPU HACTPOIKe
daitna .../99-disable-network-config.cfg MOXKHO caMOCTOATEJBHO HACTPO-
UTH CeTeBbIE ApAMETPhl TaK, 9TOObI CUCTEMA He TeHepupoBasia (aiiyi apromarude-
CKH.

Koundurypamus netplan:

root@tishgpul:/home/arity# cat /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg
network: {config: disabled}

Conepxkumoe daitna /etc/netplan/50-cloud-init.yaml:

aritytishcpul:~$ sudo vim /etc/netplan/50-cloud-init.yaml

This file is generated from information provided by the datasource. Changes
to it will not persist across an instance reboot. To disable cloud-init’s

network configuration capabilities, write a file

/etc/cloud/cloud.cfg.d/99-disable-network-config.cfg with the following:

network: {config: disabled}

network:

ethernets:
ethO:
addresses:
- 10.200.166.125/24
nameservers:
addresses:
- 8.8.8.8
search:
- tish
routes:
- to: default
via: 10.200.166.254
version: 2

1. Nnarepdeiic ethO:
e addresses: [10.200.166.125/24]: nrepdeiicy ethO npucsauBaercs [P-
azipec 10.200.166.125 ¢ mackoii nojcern 255.255.255.0 (CIDR /24).
e routes:

— VkasbiBaer MapmpyT mo ymosdanuio (default route), koropwriit Ha-
IpaBJjisieT BeCh OCTabHOI Tpaduk depe3 i3 10.200.166.254.

® nameservers:

— HacrpauBatorcs DNS-ceppepsr: 8.8.8.8 (310 mybimanabie DNS or
Google);

— YkaszbiBaeM tish jijis napamerpa search.
2. Bepcus netplan:

e version: 2: VKasplBaeT, YTO WUCIOJIb3YeTCs BTOpas Bepcus dopmara
Netplan.

11

1.3 Koudurypamusa cetu

JIns B3auMOJIEHiCTBUS ¢ BUPTYAJIbHBIMU MAIllMHAMU C TIOMOIIBIO XOCT-y3/1a, He0OXO0-
JINMO TTPOOPOCHUTH TIOPTHI Ha HACTPOEHHBIE paHee ajpeca. [y 9Toro HeobxomMo BOCIIO b
soBaTbed caepytonmmu PowerShell Cmdlet’amu:

1. New-VMSwitch.

2. New-NetIPAddress.

3. New-NetNat.

4. Add-NetNatStaticMapping.

New-VMSwitch

New-VMSwitch - Cozmaer HOBBI BUPTYya/IbHBIN CETEBOI aJIanTep JJisi BUPTYaIbHBIX
MAIIIAH.
[IpuanMaemble mapaMeTphl:

e SwitchName - ammac g Name. YTO4YHsSET MMsI BUPTYAJIbLHOI'O CETEBOTO aJlarTe-
pa. Ob6s3arenbublii napamerp; SwitchType - YTodHSIET THI CO3/aBaEMOr0 aJiall-
tepa. JlocTymHble 3HAYEHUS JIJIsT THIIA KOMMyTaTopa — Internal (BHyTpeHHHit) u
Private (wacrtusrii). Yrobbr cozmars External (BHEIIHWIT) BHPTYATbHbIH KOMMY-
TaTOP, HY>KHO yKa3aTh Jubo napamerp NetAdapterInterfaceDescription, 6o
NetAdapterName, 4TO aBTOMATUYCCKU yCTAHOBUT THUII KOMMyTaTOpa Kak External.
Internal u Private — 9TO THIIBI CETEBBIX AJIAIITEPOB, KOTOPHIE MOI'YT OBITH HC-
[IOJTb30BaHBI JIJIs HACTPOUKM BUPTYaabHBIX MamuH B Hyper-V:

— Internal - no3BoJdET BHpTyaﬂbHOﬁ MAIIINHEe 0OMEHUBATHC JaHHBIMH C XO-
CTOBOI MAIIMHONA 1 APYTUMU BUPTYaJIbHBIMHA MalllHaMM Ha TOM 2K€ XOCTeE;

— External - mo3BoJisieT BUPTYaJIbHOI MaIliHe O0IAThCHA TOJIBKO C JIPYTHMU
BUPTYaJIbHBIMI MalllMHAMM, HO HE HMeeT JIOCTYIa K XOCTY WJIM BHeEIIHei
ceTH;

4]

Cosmanne BUPTyaJIbHOIO ceTeBOro ajamnrepa B PowerShell:

1 ps C:\Windows\system32> New-VMSwitch -SwitchName "TishlNet" -SwitchType Internal

New-NetIPAddress

New-NetIPAddress - Cosmaer HoBbiil [P-ajpec n npuBgasbiBaeT ero K yKazaHHOMY
cereBOMY uHTepdeiicy.
[IpuHnuMaemble TapaMeTphI:

e InterfaceAlias - YKa3bIBaeT UMd ceTeBOro nHTEpdeiica, K KOTOpoMy OyIeT Ipu-
Bs3aH HOBBIN [P-ajpec. Obs3aTenbHbBI TApaMeTp;

e IPAddress - VYkaswiBaer [P-ajipec, KOTOpbIii HyKHO HacTpouTh. OOs3aTeTbHBIN
rapameTp;

12

e PrefixLength - Yka3siBaer jyuny npedurca nojcern s [P-agpeca. Hamnpumep,
Jutsd Macku tosicetu 255.255.255.0 jymna npedukca paBHa 24. Obsa3aresbHBIH

napameTp;

e DefaultGateway - YKa3bIBaeT aJipec ILI03a 0 YMOJTYAHUIO, KOTOPbI OyJieT uc-
0JIb30BaThCs Jjisd ykasanuoro [P-anpeca. Heobsizarembublii mapamerp.

[Tpumep nacrpoiiku HoBoro IP-anpeca B PowerShell:

1 ps C:\Windows\system32> New-NetIPAddress -InterfaceAlias "vEthernet (TishNet)" -IPAddress 10.200.166.254 -

JH S W g
W OOOOYUTHRRWN —

PrefixLength 24

[TapameTpsnr:

e InterfaceAlias - lIma unrepdeiica, nanpumep, "vEthernet (TishNet)'", K Ko-
TOopoMy npuBsA3bIBaeTcd [P-apec;

e IPAddress - Ykasauusiii [P-ajpec (nanpumep, 10.200.166.254);

e PrefixLength - /Iymua npedukca nogcern, Hanpumep, 24 mrsa 255.255.255.0;

e DefaultGateway - Ajpec MuI03a 110 YMOTIAHUIO (OMIMOHAJIBHO).

5]

Jlna mposepku duto I[P-ajipecc KOPPEKTHO CKOHMUIYPUPOBAH MOXKHO BOCIIOJIb-
30BaTbCd KOMaHI-JIeTOM: Get-NetIPAddress -AddressFamily IPv4 -InterfaceAlias
"vEthernet (t1)"

PS C:\Windows\system32> Get-NetIPAddress -AddressFamily IPv4 -InterfaceAlias "vEthernet (TishNet)"

IPAddress :
InterfaceIndex
InterfaceAlias
AddressFamily
Type
PrefixLength
PrefixOrigin
SuffixOrigin
AddressState
ValidLifetime
PreferredLifetime :
SkipAsSource
PolicyStore

10.200.166.254

: 10

: vEthernet (TishNet)
: IPv4

: Unicast

1 24

: Manual

: Manual

: Preferred

: False
: ActiveStore

New-NetNat

New-NetNat - Cozmaer nosbrit NAT (Network Address Translation) prs ykasanmoro
nHTepdeiica BHyTpeHHEN ceTn.
[IpuHEMaeMble TTapaMeTphl:

e Name - YkasbiBaer nuMsi NAT-o6bekTa. Obg3aTeIbHBIN TapaMeTp;

e InternalIPInterfaceAddressPrefix - YKa3biBaeT ajpecHbIil TpedUKC BHYTPEH-
Heil ceTw, KOTOpbIit Oymer ncnosb3oBarbest Ayig NAT. Oba3arebHBIN TapamMeTp;

e ExternalIPInterfaceAddressPrefix - YKa3biBaeT ajpecHbIil IpeduKC BHEITHEN
ceru. Heobs13aTebHbIN TapaMeTp;

e Description - /lobasser onucanue K NAT-06bekTy. HeobsizaTembHbII TapamMeTp.

13

[Tpumep cozmanus NAT B PowerShell:

1 ps C:\Windows\system32> New-NetNat -Name TishNat -InternalIPInterfaceAddressPrefix 10.200.166.0/24
[Tapamerpsnr:
e Name - Ims NAT-o6bekra, Hanpumep, TishNat;

e InternalIPInterfaceAddressPrefix - Ilpedukc BHyTpeHHeil ceTu, Halpumep,
10.200.166.0/24.

1 ps C:\Windows\system32> New-NetNat -Name TishNat -InternallPInterfaceAddressPrefix 10.200.166.0/24
2 Name : TishNat

3 ExternalIPInterfaceAddressPrefix :

4 InternalIPInterfaceAddressPrefix : 10.200.166.0/24

5) IcmpQueryTimeout : 30

6 TcpEstablishedConnectionTimeout : 1800

7 TcpTransientConnectionTimeout ¢ 120

8 TcpFilteringBehavior : AddressDependentFiltering
9 UdpFilteringBehavior : AddressDependentFiltering
10| vdpIdieSessionTimeout : 120

11 UdpInboundRefresh : False

12| store : Local

13/ active : True

[6]

Add-NetNatStaticMapping

Add-NetNatStaticMapping - JlobaBiser craTudecKoe CoocTaBIeHe IOPTOB MEXK/ Ly
premauMEu 1 BHyTpenHuMu ajpecamu st NAT (Network Address Translation). 9o mos-
BOJISI€T HAIIPABJIATH TPpadUK, IIOCTYIIAIONNN Ha BHEITHUN 8JIPeC U MOPT, K OIPE/IETICHHOMY
BHYTPEHHEMY aJIpecy H HOpPTY.

[Tpunumaemblie apamMeTphl:

e NatName - YKa3biBaeT uMs cyiectByioriero oobekta NAT, K KoTopoMy npuMeHs-
eTcs craTudeckoe coroctapyenne. O0g3aTeTbHBIN TapaMeTp;

e ExternalIPAddress - VYkasbiBaer BHemnwit [P-ajpec, ma KoTopblii moctymnaer
Bxogsmmit Tpacduk. g paspemenns 1o0bix [P-ajgpecoB MOXKHO HCIIOJIB30BATDH
0.0.0.0/0. Obs13aTebHBIN MapaMerp;

e ExternalPort - VKa3wiBaeT nopt BHerrHero [P-ajipeca, Ha KOTOpBIil OyJier mnepe-
HAIIPaBIATHCA Tpaduk. O0g3aTeIbHBIN TTapaMeTp;

e InternalIPAddress - Yka3niBaer [P-ajpec ycrpoiicrBa BHYyTpU ceTH, K KOTOPOMY
OyeT mepeHanpaBiIAThCa Tpaduk. O0sg3aTeIbHBIN TapaMeTp;

e InternalPort - Yka3bIBaeT MOPT YyCTPOICTBA BHYTPU CETU, KOTOPLI OyjeT uc-
0JTh30BaThCs i Tpaduka. Obsa3aTe/IbHbIH mapaMerp;

e Protocol - YkaswiBaer nporokos (Hampumep, TCP wim UDP), KOTOpBIit Gyaer uc-
[IOJIb30BaThC I conocTaBienns. Obsi3aTe/IbHBIN TapaMerp.

1|ps C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort
22801 -InternalIlPAddress 10.200.166.125 -InternalPort 22 -Protocol TCP

14

1

OO0~ U~ WD

10
11

13
14

16
17

18
19
20
21
22
23
24
25
26
27
28
29

31
32
33

34
35

37
38

40
41
42
43

45
46

48

49
20
ol
92
93
o4
95

o7
o8
29

7]

PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort
22801 -InternalIPAddress 10.200.166.125 -InternalPort 22 -Protocol TCP

StaticMappingID H]

NatName : TishNat

Protocol : TCP

RemoteExternalIPAddressPrefix : 0.0.0.0/0

ExternalIPAddress : 0.0.0.0

ExternalPort : 22801

InternalIPAddress : 10.200.166.125

InternalPort : 22

InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}

Active : True

PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort
22802 -InternalIPAddress 10.200.166.126 -InternalPort 22 -Protocol TCP

StaticMappingID 1

NatName : TishNat

Protocol : TCP

RemoteExternalIPAddressPrefix : 0.0.0.0/0

ExternalIPAddress : 0.0.0.0

ExternalPort : 22802

InternalIPAddress : 10.200.166.126

InternalPort : 22

InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}

Active : True

PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort
22803 -InternalIPAddress 10.200.166.127 -InternalPort 22 -Protocol TCP

StaticMappingID : 4

NatName : TishNat

Protocol : TCP

RemoteExternalIPAddressPrefix : 0.0.0.0/0

ExternalIPAddress : 0.0.0.0

ExternalPort : 22803

InternalIPAddress : 10.200.166.127

InternalPort 22

InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}

Active : True

PS C:\Windows\system32> Add-NetNatStaticMapping -NatName TishNat -ExternalIPAddress 0.0.0.0/0 -ExternalPort
22804 -InternalIPAddress 10.200.166.128 -InternalPort 22 -Protocol TCP

StaticMappingID HIRS)

NatName : TishNat

Protocol : TCP

RemoteExternalIPAddressPrefix : 0.0.0.0/0

ExternalIPAddress : 0.0.0.0

ExternalPort : 22804

InternalIPAddress : 10.200.166.128

InternalPort : 22

InternalRoutingDomainId : {00000000-0000-0000-0000-000000000000}

15

60 Active : True

st 6osiee OBICTPOIT HACTPONKHU JIPYTUX BUPTYAJIHHBIX MAIMH, MOYXKHO CKOITUPOBATH
tishcpul, a npu nactpoiike mepsoii tishgpul BoinmosiHuTh KOnupoBanue B tishgpu?.

B pesynbrare co3manus BUPTYaJIbHOIO KJIACTEPHI OBLIN MOJTYyYEHbI CJIeIYIONNEe BUP-
TyaJibHble MaIlTUHBI:

e tishcpul - "rraBHBIR " BEIYUCTUTETBHBIN y3€JT;
e tishcpu2;
e tishgpul;

e tishgpu?2.

1.4 Koudurypanusa pecypcos GPU

s koudurypamnuu pecypcoB GPU jyist y3710B, HEOOXOIMMO BOCIIOJIB30BATHCS CJIe-
naytomumu PowerShell Cmdlet’anvm:

1. Get-VMHostPartitionableGpu.
2. Add-VMGpuPartitionAdapter.
3. Set-VM.

Takzxke HeoOX0 MO ycTanoBuTh JpaiiBepa GPU, CUDA-toolkit.

Get-VMHostPartitionableGpu

Get-VMHostPartitionableGpu - Bosspamaer ciiucok GPU, ycranoBieHHBIX HA XO-
cre Hyper-V, xoropbie mnojjep:xusaior pasjenenne pecypcos (Partitioning). 9tu GPU
MOT'YT OBITH pa3jeseHbl M Ha3HAYEHbI BUPTYAJIbHBIM MallluHaM i 3(POEKTUBHOTO UC-
110JIb30BaHUS.

[IpuHuMaeMble TapaMeTphI:

e -CimSession (HeobGsi3aresibubiil) - [lozBossier ykasarh yianenHyio ceccuto CIM
(Common Information Model) s BbIO/THEHNST KOMAH/IBI Ha, JIPYTOM KOMITBIOTEDE.
Ecymm mapameTp He ykKa3aH, KOMaH/a BBIIOJIHAETCA JIOKAJIBHO.

e -ThrottleLimit (meobs3aresbublil) - OrpaHnanBacT KOJMICCTBO OJHOBPEMEHHBIX
onepanuit. Ecim napamerp He ykasaH, UCIOJIb3YeTCA CUCTEMHOE 3HaUeHHe 110 yMOJI-
YaHUIO.

Boixoabie janabie KoMaH bl BKIIOYaoT nadopmaruio o GPU, nanpumep:
e Name - lma GPU;

e TotalMemory - O6mwmit oobem namsaru GPU;

e AvailableMemory - [loctynmubrit o6bem namsatu GPU;

e Status - Tekymuii craryc GPU (manpumep, 0K).

[Ipumep uCHoIBL30BAHIA KOMAH/IHI:

16

— =
OOt =W

DO = = =
QOO U= W

DO DO BN DN
= Qo DN —

DO DO
SOt

27

PS C:\Windows\system32> Get-VMHostPartitionableGpu

PeSyﬂbTaT}ﬂﬂHOHHeHHHZ

PS C:\Windows\system32> Get-VMHostPartitionableGpu

Name
b3-625e-43bf-

ValidPartitionCounts
PartitionCount
TotalVRAM
AvailableVRAM

MinPartitionVRAM
MaxPartitionVRAM
OptimalPartitionVRAM
TotalEncode
AvailableEncode
MinPartitionEncode
MaxPartitionEncode
OptimalPartitionEncode
TotalDecode
AvailableDecode
MinPartitionDecode
MaxPartitionDecode
OptimalPartitionDecode
TotalCompute
AvailableCompute
MinPartitionCompute
MaxPartitionCompute
OptimalPartitionCompute
CimSession
ComputerName

IsDeleted

Name
b3-625e-43bf

ValidPartitionCounts
PartitionCount
TotalVRAM
AvailableVRAM

MinPartitionVRAM
MaxPartitionVRAM
OptimalPartitionVRAM
TotalEncode
AvailableEncode
MinPartitionEncode
MaxPartitionEncode
OptimalPartitionEncode
TotalDecode
AvailableDecode
MinPartitionDecode
MaxPartitionDecode
OptimalPartitionDecode
TotalCompute
AvailableCompute
MinPartitionCompute
MaxPartitionCompute
OptimalPartitionCompute
CimSession

: \\?\PCI#VEN_1002&DEV_164E&SUBSYS_D0001458&REV_C5#4&16012499&0&0041#{064092

9eb5-dc845897dd59} \GPUPARAV

: {32}

: 32

: 1000000000
: 1000000000
SupportsIncominglLiveMigration :
: 0

: 1000000000

: 1000000000

: 18446744073709551615
: 18446744073709551615
: 0

: 18446744073709551615
: 18446744073709551615
: 1000000000

: 1000000000

HO)

: 1000000000

: 1000000000

: 1000000000

: 1000000000

HO)

: 1000000000

: 1000000000

: CimSession:

: XSPMAIN

: False

False

: \\?\PCI#VEN_10DE&DEV_2F04&SUBSYS_F3261569&REV_A1#740E0A73882DB04800#{064092

-9eb5-dc845897dd59}\GPUPARAV

¢ {32}

: 32

: 1000000000
: 1000000000
SupportsIncominglLiveMigration :
: 0

: 1000000000

: 1000000000

: 18446744073709551615
: 18446744073709551615
: 0

: 18446744073709551615
: 18446744073709551615
: 1000000000

: 1000000000

HI0]

: 1000000000

: 1000000000

: 1000000000

: 1000000000

H0]

: 1000000000

: 1000000000

: CimSession:

False

17

59 ComputerName : XSPMAIN
60| 1sDeleted : False

—_

1

SO0~ OHUIHR=WIND

[8] Dra komanma sBisiercst nepsbiM mmarom B Hacrpoitke GPU jyis BUpTyasbHBIX
mamun. Ona no3BosgeT npoBeputh, kakne GPU Ha xocTe mojep:kuBaioT pasjejenue u
CKOJIBKO PECYPCOB JIOCTYIIHO JIJIsi BBIJIEJICHUS.

CUDA-sipa ectb B VEN_10DE&DEV. D10 rpadudeckoe ycTpoiicTBo ¢ siapom Nvidia
5070.

Add-VMGpuPartitionAdapter

Add-VMGpuPartitionAdapter - /lobaBiser agamnrep s pasesnenus pecypcoB GPU
K yKasaHHOW BupTyasbHOil Mamuae (VM). Dror amantep mo3BoJisieT BUPTYaJIbHON Ma-
IIIAHE UCIIOJIB30BATD OIPEJICICHHYIO 9acTh BHIYUCIUTEIbHBIX, TPAMUICCKUX U JIPYTUX pe-
cypcoB dusnaeckoro GPU.

[IpuanMaemble TapaMeTphI:

e -VMName - Yka3blBaeT MMs BUPTYaJbHON MAaIWHBI, K KOTOpOil OyjieT jgobaBjieH
GPU-ananrep. Obs3aTe/bHbI TADAMETD;

e -InstancePath - YkaswiBaeT myTh K KoHKpeTHOMy GPU, KOTOpHIil OyaeT pasaeaeH
JUUTST UCTIOJIb30BAHUS BUPTYyaabHOM MarmuHon. O0si3aTe IbHBIN TTapaMeTp;

e -MinPartitionVRAM, -MaxPartitionVRAM, -OptimalPartitionVRAM - VYcranas-
JIMBAIOT MUHUMAJIbHBIA, MAKCUMAJbHbBI U ONTHMAJBHBIA O0BLEM BHICONAMSITH
(VRAM), koropslit 6y/1eT JOCTYIIEH BUPTYaJbHOIl MAIITIHE;

e -MinPartitionEncode, -MaxPartitionEncode, -OptimalPartitionEncode - ¥Ycra-
HaBJIMBAIOT MUHUMAJIbHOE, MAKCUMAJbHOE U OITUMAJIbBHOE KOJIMYECTBO PECYpPCOB
JJI KOJIUPOBaHUA BUJEO;

e -MinPartitionDecode, -MaxPartitionDecode, -OptimalPartitionDecode - YcTa-
HaB/IUBAIOT MUHMMAaJIbHOE, MAaKCUMAaJIbHOE U ONTUMAJIbHOE KOJMYECTBO PECypCOB
JJ18 JeKOIUPOBaHUsA BUJIEO;

e -MinPartitionCompute, -MaxPartitionCompute,

-OptimalPartitionCompute - YcTaHaBIMBAIOT MHUHUMAaJbHOE, MAaKCHMAJIbHOE U
ONTHMAJTHLHOE KOJIMIECTBO BBIYUCIUTEIbHBIX pecypcos (Compute), TOCTYIHBIX BUD-
TyaJIbHOU MAalllnHe.

IIpHNKi)HCHOﬂbBOBaHHHZ

PS C:\Windows\system32> Add-VMGpuPartitionAdapter -VMName tishgpul -InstancePath "\\7\PCI#VEN_10DE&
DEV_2F04&SUBSYS_F3261569&%REV_A1#740E0A73882DB04800#{064092b3-625e-43bf -9eb5-dc845897dd59}\GPUPARAV" -
MinPartitionVRAM 100000000 -MaxPartitionVRAM 1000000000 -OptimalPartitionVRAM 1000000000 -
MinPartitionCompute 100000000 -MaxPartitionCompute 1000000000 -OptimalPartitionCompute 1000000000

PS C:\Windows\system32> Get-VMGpuPartitionAdapter -VMName tishgpul
InstancePath : \\?\PCI#VEN_10DE&DEV_2F04&SUBSYS_F3261569&REV_A1#740E0A73882DB04800#{064092
b3-625e-43bf
-9eb5-dc845897dd59} \GPUPARAV
SupportsOutgoingliveMigration : False
CurrentPartitionVRAM : 1000000000
MinPartitionVRAM : 100000000

18

11| MaxPartitionVRAM : 1000000000
12| optimalPartitionVRAM : 1000000000
13| currentPartitionEncode : 1000000000
14 MinPartitionEncode

15 MaxPartitionEncode

16 OptimalPartitionEncode :

17| currentPartitionDecode : 1000000000
18 MinPartitionDecode

19 MaxPartitionDecode

20 OptimalPartitionDecode

21 CurrentPartitionCompute : 0

22 MinPartitionCompute : 100000000

23 MaxPartitionCompute : 1000000000

24 OptimalPartitionCompute : 1000000000

25| PartitionId 0

26 | PartitionVfLuid : 050760292

27 | Name : IlapameTpn paszgena GPU

28 14 : Microsoft:AE124752-47A6-4788-9C91-8DAE6D45A744\5B2FD022-36CF-4FD9-83D7 -
D5B60274737E

29 vM1a : ae124752-47a6-4788-9c91-8dae6d45a744

30| vMName : tishgpul

31 VMSnapshotId : 00000000-0000-0000-0000-000000000000

32 VMSnapshotName

33| CimSession : CimSession:

34 ComputerName : XSPMAIN

35| IsDeleted : False

36 VMCheckpointId : 00000000-0000-0000-0000-000000000000

37 VMCheckpointName

Set-VM

Set-VM - V3mensier mapamerpsl BUpTyasbHOit Mammuabl (VM), BKiIto9Yas HACTPOWKM
aMsITH, ITPOIECCOPa U JIPYTIUX PECYPCOB.
[IpuHuMaemMble TapaMeTphI:

-VMName - YKa3blBaeT UMsl BUPTYAJIbHON MAIIMHBI, JJIsT KOTOPOH U3MEHAIOTCH Ha-
crpoiiku. ObsI3aTe/IbHBIN TapaMerp;

-GuestControlledCacheTypes - YKa3bIBaeT, Pa3peIeHo Jin TOCTEBOI ONEePAIOH-
HOIl cHCTeMe YIpPAaBJI[ATh TUIAMHU KIIUPOBaHUs. 3HadeHue $true BKIIOUAET ITY
BO3MOXKHOCTD;

-LowMemoryMappedIoSpace - YcTaHaBiIuBaeT 00beM BBIJIEIEHHOI'O &/IPECHOIO IIPO-
CTPAHCTBa [JId HU3KOYPOBHEBOI'O IIaMATH, UCIIOJIL3YyeMON yCTpOWCTBaMU, HaIpU-
Mmep, 3GB;

-HighMemoryMappedIoSpace - YcTaHaBimBaeT OObEM BBIIEIECHHOIO aPECHOTO
IPOCTPAHCTBA [Tl BBICOKOYPOBHEBOIO NaMsITH, HanpuMep, 32GB;

-ProcessorCount (HeobGs3aTesbHblii) - [lo3BosIsSIET 3a/1aTh KOJMIECTBO MPOIIECCO-
POB, JOCTYITHBIX BUPTYaJIbHON MaIllHE;

-DynamicMemory (Heobs3aTesbHbIT) - Paspemmaer ucroabp3oBanue THHAMIIECKON
aMATH JIJIsI BUPTYAJIbHOM MaIIIMHBI.

HpHMep HCIIOJIB30BaHAd KOMaH/IbI:

1 set-wm

-VMName tishgpul -GuestControlledCacheTypes $true -LowMemoryMappedIoSpace 3GB -

HighMemoryMappedIoSpace 32GB

19

DO = = e
QOO UIHEEWNHROOOIOHUt =W

DO DO DO DO DO
Ul WO

[OV] W)) N0) \V)
[esiNeX0 ol [e))

WWWWW
Gl N

WWWW
Nojo N fap

OO U= WO

Komanna n3menser nHacTpoilku BUpPTyaabHON MamuHbl tishgpul, pa3peras rocre-
Boit OC ymupaB/iaTh TUIIAME K3IIMPOBaHus u Bbledsd 3GB i Hu3koypoBHEBOTO ajipec-
Horo mpoctpancTsa u 32GB 1 BBICOKOYPOBHEBOTO a/IPECHOI0 MTPOCTPAHCTBA.

9]

Ycranoska 110

st ycTaHOBKU JApaiiBepoB IrpadUIecKoro yCTpoiicTBa HEOOXOINMO CKOIIMPOBATH UX
C XOCT-yCTPOMCTBA C MOMOIIBIO SCP.
Brimosinenne konuposanus Jipaiisepos GPU:

KommpyeM comepxuMoe TNamKu C JpaliBepaMu C XOCTa Ha BUPTyalbHyD Mamuey depes SCP

-r: KomupoBaHMEe PeKypCHBHO (BKINYas HOJKATAJOTH)

-P 22803: ykasaHme mopTa Ais momriwdeHus (22803)

scp -r -P 22803 C:\WINDOWS\System32\DriverStore\FileRepository\nv_dispi.inf_amd64_20ae8f14a487d5db
arity@127.0.0.1:/tmp/

CosnaeM IupekTopub Iis ApaiiBepoB B WSL (ecim eme He cymecTByeT)
root@tishgpul:/tmp# mkdir -p /usr/lib/wsl/drivers

IlepexoluM B CO3BJAHHYD AUPEKTODPHUI0
root@tishgpul:/tmp# cd /usr/lib/wsl/drivers

TlpoBepsieM cozepxuMoe AupekTopuu (Ha NAHHHE MOMEHT OHA IyCTa)
root@tishgpul:/usr/lib/wsl/drivers# ls

IlepexomuM Ha ypoBeHBL Bhlle, B AWpeKTopuo WSL
root@tishgpul:/usr/lib/wsl/drivers# cd ..

llpoBepseM comepxuMoe mupekTopum /usr/lib/wsl (comepxuT Tompko manky drivers)
root@tishgpul:/usr/lib/wsl# 1s drivers

CospaeM HoByL mupekTopuio lib B WSL (MoxeT 6HTH HyXHa I OPYTHX Iejeir)
root@tishgpul:/usr/lib/wsl# mkdir lib

IlpoBepsieM, 4UTO Temepsr B /usr/lib/wsl ecTp mBe mamgm: drivers m 1lib
root@tishgpul:/usr/lib/wsl# 1ls drivers lib

IlepeMemaeM CKavaHHyL IaNKy ApailiBepa m3 /tmp B AupekTopuw drivers
root@tishgpul:/usr/lib/wsl# mv /tmp/nv_dispi.inf_amd64_20ae8f14a487d5db/ /usr/lib/wsl/drivers/

IlpoBepsieM cozepxuMoe nupekTopuu /usr/lib/wsl (manmka drivers COZEepXUT NepeMeljeHHbE OAHHLE)
root@tishgpul:/usr/lib/wsl# 1s
drivers 1ib

V6expmaeMcs, uTo B mamke drivers Temeph HaXOOWTCH [alKa C IpailiBepaMu
root@tishgpul:/usr/lib/wsl# 1s drivers/
nv_dispi.inf_amd64_20ae8f14a487d5db

Onepamnus saBepmeHa, ApaiiBepH HaXoOATCA B NPABUILHON IUPEKTOPUH
root@tishgpul:/usr/lib/wsl#

Kondurypanus npaiiBepoB Ha BUPTyaJbHON MaIlluHE:

Kommpyem 6ubmmoTeky lib m3 Windows Ha BupTyanbHyo MammHy deped SCP

-r: KommMpoBaHHNe PEeKyPCHBHO

-P 22803: ykasaHme nopTa JJjd NOIKIIOYESHUS

PS C:\Windows\system32> scp -r -P 22803 C:\Windows\System32\1lxss\lib arity@127.0.0.1:/tmp/

IlepeMemaeM CKONMPOBaHHyM 6uOIMOTEKy B IupeKTopubo WSL
root@tishgpul:/usr/lib/wsl# mv /tmp/lib/ /usr/lib/wsl/

20

94 llpoBepsieM cofzepxuMoe AupeKkTopu: /usr/lib/wsl, 4uTobm yb6eIuThbCH, UTO 6MEIHOTEKA IepeMeleHa
10 root@tishgpul:/usr/lib/wsl# 1s
11| arivers 1ib
12
13 4 llpoBepsieM comepxuMoe mupekTopum lib B WSL
14 root@tishgpul:/usr/lib/wsl# 1ls lib

15 libcudadebugger.so.1 1libd3dl2core.so libnvcuvid.so.1 libnvidia-ml.so.1 libnvwgf2umx.so
16 1ibcuda.so 1ibd3d12.so libnvdxdlkernels.so libnvidia-opticalflow.so nvidia-smi

17 1ibcuda.so.1 libdxcore.so libnvidia-encode.so libnvidia-opticalflow.so.1

18 1ibcuda.so.1.1 libnvcuvid.so libnvidia-encode.so.1 libnvoptix.so.1l

19

20 # Ycranasmusaen mpaBa LOCTyma Ha gupekTopmio WSL: TombKo uTeHme u BhmonsHenme (555)
21 root@tishgpul:/usr/lib# chmod -R 555 wsl/

22

22} # VcranaBnuBaeM BIaZenblleM AupekTopuu WSL monp3oBaTens root M Ipymmy root

24 root@tishgpul:/usr/lib# chown -R root:root wsl/

25

26| # PemaxTupyem dain ld.so.conf.d mna mobaBnenus nmyTu K 6ubmmorekam WSL

27 root@tishgpul:/usr/lib/wsl/1ib# vim /etc/ld.so.conf.d/1ld.wsl.conf

28

29 # JllobaBnseM myTe K 6ubimorexam B daitn 1ld.wsl.conf

30 /usr/1ib/wsl/1ib

31

32 # IlpuMeHsieM u3MeHeHusa C moMompk ldconfig, WTo6m OOHOBUTL K3 AMHAMUYECKHX O6mM6IMOTEK
33 root@tishgpul:/usr/lib/wsl/1lib# ldconfig

34 /sbin/ldconfig.real: /usr/lib/wsl/lib/libcuda.so.1 is not a symbolic link

35

36 # PepaxTupyeM mnu coszaeM dain /etc/profile.d/wsl.sh mus pobaBmeHus myTw B cucTeMHbii PATH
37 root@tishgpul:/usr/lib# vim /etc/profile.d/wsl.sh

38

39 # llpoBepsieM cozmepxumMoe ¢aiinma wsl.sh, uTobr y6emwThCH B IPaBUILHOCTH IIyTH

40 root@tishgpul:/usr/lib/wsl/lib# cat /etc/profile.d/wsl.sh

41/ export PATH=$PATH:/usr/lib/wsl/lib

42

43 # Jllenaem daitnm wsl.sh mcrmonHseMsM

44 root@tishgpul:/usr/1lib# chmod +x /etc/profile.d/wsl.sh

Coopka sipa ¢ ucrnoab3oBanueM rorosoro shell ckpurrra:

**

3arpyxaeM u BhmonHseM ckpunT ycraHoBku DXGKRNL (DirectX Kernel) uepes DKMS (Dynamic Kernel Module Support
):

- curl: yTunuTa I8 3arpy3KM [JAaHHHX M3 HHTEPHeTa.

-fsSL:

-f: 3aBepumTh C ommbKo#, ecim mpomsomen c6oir HTTP-3ampoca.

-S: TUXUWJ peXuM, CKpHBAOIUi IPOTpPecc 3arpy3KH.

-S: oTobpaxeHre ommbOK Jaxe B THUXOM pEXUME.

-L: aBToMaTHYecKoe cCjeloBaHWe 3a IepeHaIpaBJIeHUAMHU.

https://content.staralt.dev/dxgkrnl-dkms/main/install.sh: URL cKpumTa yCTaHOBKH.

#

#

#

#

#

OO =W —

| : mepezmava 3arpyXeHHOTO COZEPXMMOIO CKPMINTA KaK BBOZA Clelybmed KOMaHIE .
sudo bash -es:
- bash: samyckaeT 3arpyxXeHHHH CKpPHUIT B HHTepIpeTaTope KoMaHI bash.
- -e: 3aBepllaeT BHIOJHEHHE CKPUITA IIPK I060# omubke.
- -S: HMHTepIpeTHpPyeT JaHHHE, IOfaBaeMie Uepe3 CTaHIAPTHHH BBOJ, KaK CleHapuil bash.
14 aritytishgpul:~$ curl -fsSL https://content.staralt.dev/dxgkrnl-dkms/main/install.sh | sudo bash -es

16 Target Kernel Version: 5.15.0-124-generic

18 Installing dependencies...

s npoBepku KoppekTHocTu paborel GPU Ha BUpTyabHOM y371€ MOXKHO BOCIIOJIb-
30BaThCH yTUJIATAMMU:

e Ispci;

21

1
2

OO0~ U~ W

10
11

13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29

1
2

— Ucnonwayercs st orobpazkenus crucka PCl-yerpoiicTs, mok/moueHnbx K
cucreme. Kitiod -v BBIBOJAUT TOJAPOOHYIO MH(MOPMAIUIO O KaXKJIOM yCTPOIi-
crBe. B nmannom ciydae, komanaa nojarsepxkaaer nagunaue GPU, koropbrit
ucrnosb3yer Jpaiisep dxgkrnl;

e nvidia-smi;

— Yruaura Jjist yupaienus u MoauToputra rpadpudeckux kapt NVIDIA. TTo-
Ka3bIBaeT WHMOPMAINIO O Bepcuu JpaiiBepa, coctosuun GPU, ucros3osa-
HUU [TaMsITHA, TEMIIEPAType W 3allyIIeHHBIX Mporeccax. B ganHoOM mpumepe
orobpazkaercs craryc GPU NVIDIA GeForce RTX 5070, ucross3oBanne
1543 MiB namaru n 6a3oBas 3arpyska GPU;

aritytishgpul:~$ 1lspci -v
c556:00:00.0 3D controller: Microsoft Corporation Device 008e

Physical Slot: 4111917767

Flags: bus master, fast devsel, latency O, NUMA node O

Capabilities: <access denied>

Kernel driver in use: dxgkrnl

Kernel modules: dxgkrnl
aritytishgpul:~$ nvidia-smi
Sat Jan 3 17:25:15 2026
o +
| NVIDIA-SMI 580.102.01 Driver Version: 581.80 CUDA Version: 13.0
e oo o +
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Puwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
+ +		
0 NVIDIA GeForce RTX 5070 On	00000000:01:00.0 On	N/A
0% 57C PO 36W / 250W	1543MiB / 12227MiB	6% Default
		N/A
g o - - +
F o +

Processes:
GPU GI CI PID Type Process name GPU Memory

| |
| |
| ID ID Usage |
| |
| |

No running processes found

st yeranosku 6ubsmoreku it paborsel ¢ CUDA HeoOX0auMO BBIIOJTHUTD CJICITYIO-
e KOMaH/IbI:

BarpyxaeM my6nuuHbi Kiod penosuTopus NVIDIA O NOANHCH IaKeTOB.

Baxno gna obecneveHuss 6e30MaCHOCTH ¥ IPOBEPKU ITAKETOB.

aritytishgpul:~$ sudo apt-key adv --fetch-keys https://developer.download.
nvidia.com

/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc . pub

Buumamme: apt-key ycTapeil. PeKoMeHAyeTCHs MCIOIb30BaTh HOBHM METOJ, yIpaBJeHMS KIOYaMM depe3 IUPEKTOPHI
trusted.gpg.d.

Kmo4 ycmemHO MMIOPTHPOBAaH:

"cudatools <cudatools@nvidia.com>"

Jlo6aBuseM pemosuTopuit CUDA B CIMCOK HCTOYHHKOB IIAKETOB.
DTo mO3BONAET NONyYaTh JOCTYI K IOCIEIHMM BepcusM MHCTpyMeHToB CUDA.

22

13 aritytishgpul:~$ sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/
14 cuda/repos/ubuntu2204/x86_64/ /"

15

16 # yxasammi penosuTopuil mobasnen B ¢aiin /etc/apt/sources.list.d.

17 # O6rosnzem cmucox maxeros NS 3aTPy3KM METAaJaHHHX M3 HOBOTO DPENO3UTOPHS.

18 4 lonyyaem nmaxkeTh u3 pemo3uTopus NVIDIA m cTanmapTHex pemosuTopuer Ubuntu.

19 # samevanme: xmow pemno3uTOpusa COXpaH&H B ycTapeBmeM dpopMaTe, KakK yKa3aHO B IpPeIyNpPeXIeHHUMU.
20

21| # Vcramasmmsaenm maxer CUDA Toolkit Bepcum 12.

22| 4 OTOT NakeT BKJINYaeT 6UOIMOTEKH, KOMIMJIATOPH M YTUIWTH OJIa paspaboTKu C ucnoilb3oBaHueM GPU.
23 aritytishgpul:~$ sudo apt install cuda-toolkit-12

24

25 # Co3zlaéM CKpHIT OKPyXeHWS IS aBTOMAaTWYeCKON HacTpo¥km mepemenmmmx PATH, CUDA_HOME m LD_LIBRARY_PATH.
26 aritytishgpul:/usr/local/cuda/bin$ sudo touch /etc/profile.d/cuda.sh

27

28 # PemaxTupyeM ¢daiin cuda.sh gma mobaBileHMS IEPEMEHHHX OKDPYXEHHS.

29| ¢ sm IIepeMeHHbE II0O3BOJIANT CHCTEME HaXOOuTh 6uHapHsle daiinsl u 6ubmmoTexku CUDA.

30 aritytishgpul:/usr/local/cuda$ sudo vim /etc/profile.d/cuda.sh

31

32| # llpoBepsieM comepxumoe odaitma, uTo6H ybeIMTHCH B NPaBMIbHON HACTPOWKE IEPEMEHHHIX .

33 aritytishgpul:/usr/local/cuda$ cat /etc/profile.d/cuda.sh

34 export PATH=$PATH:/usr/local/cuda/bin

35| export CUDA_HOME=$CUDA_HOME: /usr/local/cuda

36 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/1ib64

38 # llenaemM daitnm cuda.sh HCIONHAEMHM, YTOOH IepEMEHHHE OKDPYXEHHUS IPUMEHSINCH IIPH BXOAE B CHUCTEMY.
39 aritytishgpul:~$ sudo chmod +x /etc/profile.d/cuda.sh

1.5 Koudurypamua NF'S

NFS (Network File System) — a0 cereBoit npoTokos, pazpaboTaHHbI JIJIsT 1Pe/I0-
cTaBJieHus O0ITero JocTyna K (haityioBeiM cucteMaMm depes cerb. C momorbio NFS mosib30-
BaTe/ I WK MPUIOKEHUS MOTYT paboTaTh ¢ (aifjiaMu, paciooKEeHHbIMI Ha YIAJIEHHOM
cepBepe, Tak, Kak Gy/JT0 OHM HAXOJATCs Ha JIOKAJIbHON MarmmHe. [10]

Jljist KOppeKTHOI pabOThl MCIOJIHIEMBIX U JIPYIuX (ailjloB Ha BUPTYaAJbHBIX MalllW-
HaX, BMECTO MOCTOSTHHOT'O KOIMUPOBAHUST MOYKHO BOCITOJIB30BATHCA TPOTOKOJIOM CETEBOTO
jocTyna K aitoBoit cucreme omHON n3 MmarmuH. /g sToro moxkuo Hacrpouth NFS Ha
ofHOM u3 y370B (Hanpumep tishgpul) u jajiee BBIIOJIHUTH MOHTHDOBAHHME B KATAJIOIU
JIPYTUX BUPTYaJIbHBIX MAIINH.

Hacrpoiika etc/hosts

st yyio6HO# paboThl B ¢pejie BUPTYAJbHBIX MAITMH MOXKHO 3a/aTh JIOMEHHBIC TMEHA
B (aitnie etc/hosts. st T0r0 ero HeoOXOMMO OTPEJAKTUPOBAThH Ha KaKJI0M BUPTYaIb-
HOIT MalIllnHe.

@opMmaT co3/IaHusd JJOMEHHOI'O UMEHMU:

1 # IP-azpec, OcHoBHOe mMaA XxocCTa, l[lomHOe JOMEHHOE WMS
21 10.200.166.126 tishcpu2 tishcpu2.tish

[Ipumep aiina etc/hosts:

aritytishcpul:~$ cat /etc/hosts
127.0.0.1 localhost

10.200.166.125 tishcpul tishcpul.tish
10.200.166.126 tishcpu2 tishcpu2.tish
10.200.166.127 tishgpul tishgpul.tish

Ul WO

23

40

10.200.166.128 tishgpu2 tishgpu2.tish

The following lines are desirable for IPv6 capable hosts
HES ip6-localhost ip6-loopback

fe00::0 ip6-localnet

££00::0 ip6-mcastprefix

££02::1 ip6-allnodes

Comepxumoe ¢aiina /etc/exports Ha tishcpul

OrcmopTupyeM IgupekTopumo /home/arity mms obmero mocryma uepes NFS

*: pmocTym paspeméH IOid BCeX XOCTOB

rw: paspemeHHe Ha YTEHHWE ¥ 3alHUCh

nohide: gmouepHme ¢(aiinoBhe CHCTEMB BUIHBHI

no_subtree_check: OTKIHOYaeT NPOBEPKY BIOXEHHHX IIOAJEPEBBLEB IJf IIOBHIIEHWS IPOM3BOIUTENILHOCTH
aritytishcpul:~$ cat /etc/exports

/home/arity *(rw,nohide,no_subtree_check)

IlpuveHsieM um3MeHeHuss B HacTpoiikax NFS (mepesamyckaeM 3KCIOPT)
-a: PKCHOPT BCeXx 3ammucei
-r: mepesamycKaeT 3KCIOPT
-V: IOZOPOGHHI BHBOZ,

aritytishcpul:~$ sudo exportfs -arv

exporting *:/home/arity

YcranaBmmBaeM kKimeHT NFS ma tishcpu2
sudo apt install nfs-common

Vpansem cTapyo mamky (ecnm CymecTBYeT) IJif MOHTHPOBAHMUS
aritytishcpu2:/mnt$ sudo rmdir share

IlpoBepsieM coZiepxuMoe AWpeKTOpu: /mnt
aritytishcpu2:/mnt$ 1s

CospaéM HoByH mamky share gma monTumposanus NFS
aritytishcpu2:/mnt$ sudo mkdir share

MoHTHpyeM SKCIODPTHpPOBAaHHyDL AupekTopub /home/arity c tishgpul B zmoxambHyH mamky /mnt/share
-t nfs: ykasmwBaeT Tun ¢aitnmosoit cuctems (NFS)
aritytishcpu2:/mnt$ sudo mount -t nfs tishgpul:/home/arity /mnt/share

IlpoBepsieM COLEepXUMOe CMOHTHUPOBAHHOM INUPEKTOPHH
aritytishgpu2:/mnt$ 1s share/
hello.txt install.sh

UYuraem daitn hello.txt M3 CMOHTHPOBAHHO! IUPEKTOPHUU
aritytishgpu2:/mnt$ cat share/hello.txt

happy hacking

aritytishgpu2:/mnt$

1.6 Koundurypamuga slurm

SLURM (Simple Linux Utility for Resource Management) — 910 oTKpbITast cucrema
yIIpaBICHUA 3a/[a9aMy U pecypcaMi B Kjacrepax. OHa UCHOIb3YeTCs JIJIs PACIPe/Ie/ICHIA
BBIYUC/TUTE/IHHBIX 33189 MEXKJIY Y3JaMU U YIPABJICHUS UX BBIITOJHEHUEM.

C nmomompio conf.html daitta Kondurypanuu HeodxouMo chopMUPOBATHL KOHMU-
rypamuio B /etc/slurm/slurm. conf.

e ClusterName - lmsa kinacrepa SLURM (mampumep, "tish"), wcmosnbsyercs st
nIeHTHUKAIIT KIacTepa.

24

SlurmctldHost - Nms xocra, na kotopom paboraet gemon ynpasienns SLURM
(slurmetld), B marnOM citydae 510 tishcpul.

MpiDefault - YkasbiBaer crangaprayio peanusaimo MPI (o ymomaanuio none,
T.e. MPI ne ucnosnbsyercs).

ProctrackType - Meron oTcieKuBanms IPOIeccoB; proctrack/cgroup o3Ha4aeT
HCIIOJIB30BaHUE CEroup JjIsi U30JIAINH TPOIECCOB.

ReturnToService - Yka3biBaer, JIOJKEH JIX y3eJ aBTOMATUIECKH BO3BPAIIATHCH
B paboTy I0C/Ie BOCCTAHOBJIEHUs (1 - BKJIIOUEHO).

SlurmctldPidFile - Ilyts k daiiny PID aia memona slurmetld.
SlurmdPidFile - IIyts x daitry PID ana gemona slurmd.

SlurmdSpoolDir - [dupexkropusi, riae slurmd xpanuT BpeMeHHBbIE QallIbl U UH-
dopMaImio o 3aaHusIX.

SlurmUser - Nms mosb3oBaTessi, o1 KOTOPBIM 3airyckatorcs mporeccbl SLURM
(06braHO slurm).

StateSaveLocation - /lupekTopust /st cOXpaHeHHsI COCTOSIHUS KJiacTepa, Heob-
XOJIUMA JIJIsT BOCCTAHOBJIEHHS TIOC/IE TIepe3alrycKa.

SwitchType - Tum cereBoro kKommyraTopa; switch/none yKasbIBaeT, 9T0 KOMMY-
TATOP HE HMCIIOJIb3YeTCs.

TaskPlugin - [lnarun g ynpasienus 3ajgadavu; task/affinity nosBosiser 3a-
naBaTh npuBasky 3agad K CPU.

SchedulerType - Tun mianuposmuka 3a1a41; sched/backfill paspemnraer 3aa9u
MEHBIIIEr0 pas3Mepa BBIMOJIHITHCS TapasIeIlbHO ¢ KPYITHBIMA.

Select Type - Mexanusm BeIiOOpa pecypcos;

SelectTypeParameters - Ilapamerpsr Boibopa pecypcos; CR_Core ykasbiBaeT
pacipejiesieHue o sjpaM.

JobAcctGatherType - Meros cbopa JaHHBIX O BBIIIOJTHEHUN 3314
SlurmctldLogFile - IIyts K daitny xypuasa g jjemona slurmetld.
SlurmdLogFile - Iyt k daitny)kypuasa s gemona slurmd.

NodeName - Omnuncanne BBIYACIUTEIBHBIX y3/10B; omuckiBaeT 4 y3ia ¢ 2 CPU na
KazKJIOM.

PartitionName - Vms pasnena (partition), Bkstogarorero see y3ibl (Nodes=ALL);
HCIIOJIb3YETCs JIsT PACIIPEIeJIeHNsT 3a1a4.

Default - YkasbiBaer, 9T0o JaHHBIN pas3jesl sBISETCS PA3JEJIOM O YMOJTIAHUIO
(YES).

MaxTime - Makcumaibioe BpeMs BbinosHeHus 3aa4n; INFINITE o3navaer, 910
OrpaHUYCHUN HET.

25

DO = = e
QOO UIHE WO UHREWN =

DO DO DO DO
=~ QO DN =

[\
ot

[OV] \W))) \V)
SOOI

W W
DN —

34

e State - Craryc y3y0B wiu pasjena (UP - y3/bl B paboueM COCTOSHNN).

[Ipumep ycranoBKM KOH(MUTYpATUN:

aritytishcpul:~$ sudo apt install slurm-wlm

aritytishcpul:~$ nano /etc/slurm/slurm.conf
#YkasmBaeM:

slurm.conf file generated by configurator easy.html.
Put this file on all nodes of your cluster.
See the slurm.conf man page for more information.
#

ClusterName=tish

SlurmctldHost=tishcpul

#

#MailProg=/bin/mail

#MpiDefault=

#MpiParams=ports=#-#
ProctrackType=proctrack/cgroup
ReturnToService=2
SlurmctldPidFile=/var/run/slurmctld.pid
#SlurmctldPort=6817
SlurmdPidFile=/var/run/slurmd.pid
#SlurmdPort=6818
SlurmdSpoolDir=/var/spool/slurmd
SlurmUser=slurm

#SlurmdUser=root
StateSaveLocation=/var/spool/slurmctld
#SwitchType=
TaskPlugin=task/affinity,task/cgroup

#

#

TIMERS

#KillWait=30

#MinJobAge=300

#S1lurmctldTimeout=120
#S1urmdTimeout=300

#

#

SCHEDULING
SchedulerType=sched/backfill
SelectType=select/cons_tres

#

#

LOGGING AND ACCOUNTING
#AccountingStorageType=
#JobAcctGatherFrequency=30
#JobAcctGatherType=
#SlurmctldDebug=info
SlurmctldLogFile=/var/log/slurmctld.log
#SlurmdDebug=info
SlurmdLogFile=/var/log/slurmd.log

#

#

COMPUTE NODES
NodeName=tishcpu[1-2],tishgpul[1-2] CPUs=2 State=UNKNOWN

PartitionName=tishpartition Nodes=ALL Default=YES MaxTime=INFINITE State=UP

#KonupyeM aToT koHpur B Mammem tishcpu2, tishgpul, tishgpu2

26

1
2

96
o7

1.7 Koudurypamusa munge

MUNGE — 310 mHCTpYMEHT /1151 8y TEHTHMDUKAIINN, KOTOPBIH UCIOJIB3YETCs JIJTsT 00ec-
reveHns 0e30I1aCHOCTH B KJIaCTEPaX.
Hwuke ipuBeiens! marn KoHUryparun Krrodeil munge Jiid KOH(UTYPAITTT MaITHH.

Kommpyem odaiin kmoga MUNGE c ysma tishgpul Ha BCe MammHH KJacTepa.
9ToT daiin HeobxomuM ANA ayTeHTHPMKAIMM B KIacTepe.

root@tishcpu2:/tmp# chown munge:munge ./munge.key
UsMeHsieM Blafenblla M Ipynny ¢daina KiIoda Ha Nojb3oBaTensd u rpynmy MUNGE.
9To HeobxomuMo INA KOPPEKTHOH# paboTk cayx6im MUNGE.

root@tishcpu2:/tmp# 1ls -1
IlpoBepsieM cozepxuMoe TeKyliedl InupexTopum, 4TobH ybenuTbcs, 4TO daily KiwYa HMeeT HyXHHe IpaBa:
-rw------- ! [OCTYI TONBKO HJs BIafelblia.

root@tishcpu2:/tmp# mv /etc/munge/munge.key /etc/munge/munge_old.key
IlepewMeHOBHBaEM CymecTBYylmui Kimod B ‘munge_old.key‘ Ins pe3epBHOTO KOIMPOBAHHMS.

root@tishcpu2:/tmp# mv munge.key /etc/munge/munge.key
IlepeMemaeM HOBHI daiin Kiobda B AupeKTopumo /etc/munge u 3azaéM eMy IpaBHIbHOE M.

root@tishcpu2:/etc/munge# 1s
IlpoBepsieM cozepxuMoe AupekTopmu /etc/munge:
V6emumuch, 4TO ecTh ABa daiina: HoBhil kmod (‘munge.key‘) um pesepsHmi kimou (‘munge_old.key®).

IlepexomuM Ha mApyroi ysem (tishgpul), moBTOpsieM mpoIecc.
aritytishgpul:/tmp$ su

Password:

root@tishgpul:/tmp# mv /etc/munge/munge.key /etc/munge/munge_old.key
Co3pmaéM pe3epBHYH KOIMK CYmeCTBYLIEro KIoda.

root@tishgpul:/tmp# chown munge:munge munge.key
llsMeHsieM BIameiblla HOBOTO Kioda Ha mnonb3oBaTens MUNGE.

root@tishgpul:/tmp# mv /tmp/munge.key /etc/munge/munge.key
llepeMemaeM HOBHII KoY B AUpeKTopuo /etc/munge.

Ha ysme tishgpu2 mosTopsieM mpormecc.
root@tishgpu2:/tmp# chown munge:munge munge.key
MeHseM Buagzensla ¢daiina Kioda.

root@tishgpu2:/tmp# mv /etc/munge/munge.key /etc/munge/munge_old.key
PesepBupyeM CTaphlil Kiod.

root@tishgpu2:/tmp# mv munge.key /etc/munge/munge.key
llepeMemaeM HOBHI KoY Ha MECTO CTaporo.

root@tishgpu2:/tmp# ls -1 /etc/munge
llpoBepsieM mpaBa X BIafeiblla Kildedl B OupekTopuu /etc/munge:
Y6epunuchk, 4To oba KiwYa IpUHAIJIEXaT [ONb30BaTelld ‘munge‘ ¥ HMENT LOCTYI TONBKO [Blafeibla.

BHOoCuM u3MeHeHUWs B KoHpurypamuo SLURM:
MeHsileM MeXaHM3M OTCIEXHBAHHS IpOIeccoB ¢ ‘cgroup’ Ha ‘linuxproc‘ B daiime konpurypaumm /etc/slurm/slurm.
conf.

Ilepe3amyckaeM CIyX6r, YTOOH NIPUMEHHUTL H3MEHEHUH :
sudo systemctl restart munge

IlepesanyckaemM crnyx6y MUNGE mnnsa mpuMeHeHHs HOBOTO KJloda.

sudo systemctl restart slurmd
llepesanyckaem memon SLURM mna paboumx ysmios.

27

58| sudo systemctl restart slurmctld
59| # llepezanyckaem memon SLURM mna ympasiswomero ysja.

61| sudo systemctl status munge
2| sudo systemctl status slurmd
63| sudo systemctl status slurmctld
64 # llpoBepseM CTATyC BCeX CIyx6, 4YTOOH yb6eOUTHCH B MX KOPPEeKTHOH paboTe.

1.8 Koudurypanua OpenMPI

OpenMPT (Open Message Passing Interface) — sro BbICOKOIpPOU3BOMTEIbHAST, THO-
Kasi U OTKpbITasi peanusarus crangapra MPI (Message Passing Interface). MPI — sto
CTAHIAPT JJI B3aUMOJIEHCTBUST MEXK /Ly IIPOIECCAMU B PACIIPEICTICHHBIX U Hapaslie/IbHbIX
BBIYUCIUTEIbHBIX CHCTEMAX, TAKMX KaK KJIACTePhbl U CyIEePKOMIIBIOTEDHI.

JIlist obMeHa COODIIEHUSIMU Y3JIbl JOJKHBI OOMEHSITHCS ITYOJUIHBIME KJIFOUYAMU 1
KazKJIbI UMeJI IpAMO MOCTYII K JAPYyT Apyry 4epe3 ssh.

Yr1o06b! mpon3BecTn 0OMEH KJII09aMu HeOOXOIMMO BBIIIOJIHUTH CJIEIYIONIHEe KOMaHIhI:

1|# Co3naémM HOByL mapy SSH-kiwuei:

2 ssh-keygen
3
44 Kommpyem my6muunbiii SSH-KIoOY Ha yZanEHHHE ysem:
O# - ssh-copy-id: yTumnuTa zms mobaBieHus Ty6IMYHOTO KioYa Ha YJAlNEHHHN CepBep.
6 # - aritytishcpul: umMa mosmb3oBaTesnsa X afgpec y3ja, KyAa KONHUPYyeTCs KIOW.
7| # Nocne sumommenma aTok KOMaHAH KoY 6yzeT mobasier B ¢aiinm authorized_keys ma yzmanémHOM cepmepe,
8 # UTO NMO3BOJMT HOJKINYaThCA mo SSH 6e3 BBOZA mapound.
9 ssh-copy-id aritytishcpul
,ZLJIH YCTaHOBKH OUOIMOTEKH OpenMPI H606XO‘ILI/IMO BBIIIOJIHUTDL CJICAYIOIIUE ITaKEThI:
1| sudo apt install openmpi-bin # ycTaHOBWTbL Ha BCe Y3JH
2| sudo apt install openmpi-dev # ycTamoBuT: Ha 1 y3exn rze 6yzeT paspaboTKa NIPHIOKEHUS

28

1.9 IlocTraHOoBKa 3a/ladM U NPOTOTUII PelIeHusd

Onucanue 3aga4n

Heobxomumo paspaborarh mapaJjiie/ibHOe NPUJIOXKEHHE, 3a1efiCTBYIOmee BbIUNC-
smurenbabie pecypcebl aByX CPU-yzmoB um ayx CUDA-y3/10B, uCHoib3yss MeXaHH3M
OpenMPI, BeimosHSIONEE aHAIN3 BPEMEHHBIX PSIJIOB UCTOPUIECKUX JAHHBIX O CTOMMO-
ctu Bitcoin.

Bamada pasbura Ha JBa dTalla:

1. 9ran 1. Arperanus JAaHHBIX: JjIs BPDEMEHHOTO Psijia UCTOPUUECKUX JTAHHBIX O
cronmoctu Bitcoin (mcxomuble naHable comepKarT HHGOPMANNIO M0 KazkabiM 10
CEeKYHJIaM) HEOOXO/MMO BBIIOJHUTH I'PYNIUPOBKY 10 JHSIM U JIsl KaXKJOrO JIHSI
BBIYUCJIUTH CPEJIHION0 IIEHY KaK MareMaTudeckoe oxxujanue 3uadennii Low n High,
a TaKyKe MUHUMaJIbHbIe 1 MakcuMajbable 3Hadennst Open u Close.

2. Dran 2. Ilouck mHTEpBAJIOB U3MEHEHUs [IE€HbI: Ha OCHOBE JTHEBHBIX arpPerupo-
BaHHDBIX JaHHBIX HeO6XO,ZLI/IMO BbIZIBUTH MHTEPBaJIbI JaT (Ha“H/IHaﬂ C HaYaJIbHOI Ja-
ThI B Ha6ope L[aHHbIX), B KOTOPBIX CpeaHdAd JHEBHaA IICHa USMEHNJIaCh HE MEHEe YeM
na 10% oTHOCHTE/NIBLHO Havasa MHTEpBaJa. /s KaykKI0oro mHTepBasa HeOOXOIIMMO
BBIBECTH HAYAJIbHYIO U KOHEUHYIO JAThl, & TAKXKEe MUHUMAJIbHbIE I MAaKCUMAJbHbIE
snavdennst Open u Close 3a Bce JHU BHYTPU HHTEPBAJIA.

Onucanme BXOJHBIX JTAHHBIX

B zamade ucnonssyercst daiir B popmare CSV ¢ mcropudecKkuMu JJAHHBIMA O CTO-
nmoctu Bitcoin|l]. B kadecrBe paszjenuress ucnosb3yercs 3anstasi. Bo BxogHoM daitie
3a/IaHbl CJIEJYIOIINE TI0JIs:

1. Timestamp - Bpemennas merka Unix B ceKyHJIax.
Open - 1eHa OTKPBITHS 38 TEPHUO/IL.

High - makcumasibnas 1nena 3a mepuo/.

Low - MuHmMaJ ibHasI IeHa 3a IEePUO/I.

Close - 1eHa 3aKpbITHS 3& EPUOJ.

AR AN B R

Volume - 06b6M TOProB (MoKeT GbITH IyCThIM).

ITporoTun pemenns Ha Python

g ornaiku aJiroputMa ObLT co3/1aH poToTul Ha A3bike Python. Ko mpororuna
[IpEe/ICTaB/ICH HUXKE:

1 import pandas as pd
3 # 3arpyska [JaHHHX
4|af = pd.read_csv("data.csv")

5 df [’Timestamp’] = pd.to_datetime(df[’Timestamp’], unit=’s’, utc=True)

7 # BruuCIeHWe CcpefHell IeHH
8 df [’Avg’] = (df[’Low’] + df[’High’]) / 2

29

10| # TpynnupoBKa IO AHAM M arperalus
11 df_days = (

12 df . groupby (df ["Timestamp"] .dt.date)
13 .agg(

14 Avg=("Avg", "mean"),

15 OpenMin=("Open", "min"),
16 OpenMax=("Open", '"max"),
17 CloseMin=("Close", "min"),
18 CloseMax=("Close", "max"),
19)

20 .reset_index()

210

22

23| # Toucx MHTEpBAallOB M3MeHeHus LeHH Ha 10%
24| intervals = [J

25 start_idx = 0

26 price_base = df_days.loc[start_idx, "Avg"]

27

28 for i in range(1l, len(df_days)):

29 price_now = df_days.loc[i, "Avg"]

30 change = abs(price_now - price_base) / price_base
31

32 if change >= 0.10:

33 interval = df_days.loc[start_idx:i]

34

35 intervals.append ({

36 "start_date": df_days.loc[start_idx, "Timestamp"],
37 "end_date": df_days.loc[i, "Timestamp"],
38 "min_open": interval["OpenMin"].min(),
39 "max_open": interval["OpenMax"].max(),
40 "min_close": interval["CloseMin"].min(),
41 "max_close": interval["CloseMax"].max(),
42 "start_avg": price_base,

43 "end_avg": price_now,

44 "change'": change,

45 b

46

47 start_idx =i + 1

48 if start_idx >= len(df_days):

49 break

g(]i) price_base = df_days.loc[start_idx, "Avg"]

52| df_intervals = pd.DataFrame (intervals)

VYBeanueHue oobéMa JaHHBIX

Ncxonnble jtaHHBIE cojepzKaT MHGMOPMAIIO 110 KaXKJI0i MUHYTe W UMEIOT pa3Mep
okoJio 360 MB. [Ipu TecrupoBanuu mapaJuieibHON pean3aiun o0padboTKa TaKuX JaHHBIX
3aHUMAJIA CJIMIIKOM MAJIO BPEMEHW, 9TO He MO3BOJIAIO JOCTOBEPHO ONEHUTH 3(PDEKTHUB-
HOCTB TapaJljIe/TbHbIX BBIYHUCJIEHNN U IMpenMyIecTBa ucroab3opanns GPU.

st perennsi 9Toit 1pobJeMbl ObLT pa3zpaboTaH CKPUIT upsample.py, BBITOJTHAIO-
Ui JIMHEHHY 0 THTEPIIOIANNIO JaHHBIX. AJITOpUTM pabOThl CKPUIITA, CJIELYOITTIi:

1. st kaxk10it mapsl coceuux sammceit (ty, 01, hy, ly, c1,v1) u (tg, 02, ha, la, c2,v5) BBI-
YHCJIAeTCA BpeMeHHO mHTepBat At = to — ty.

2. Unrepsan gemmres Ha n = At/step paBHBIX dacreii, TJie step - HOBBI BpeMeHHOI
mar (10 cexymn).

30

3. st KaxK 10l IpoMeKy TOUHO# TouKY i € [0, 1) BBIYUCIISIIOTCA MHTEPIOJIMPOBAHHBIE
3HaYEHUs C ITOMOIIbBIO JIMHEHTHON MHTEPIIOJIAINN:

a=1i/n

t; =11 +1-step

0 =01+ (00 —01) -«
hy+ (he — hy) -«
Lh4+(—0h) «

ci=c1+ (ca—)

e
v; = v + (Vg — V1) - @

—~
ST ST

B pesyabrare npumeneHusi HHTEPIOJSIUN JlaHHbIE OBLIN IIpeoOpa3oBaHbl u3 (op-
mara "Kaxkigag muuyTa'B dopmar "kaxkapie 10 CeKyHI UTO yBEIUIHIO OOBEM JTaHHBIX
B 6 pa3 - ¢ npumepro 360 MB mo 2.3 I'bB. Takoit 06bEM JIaHHBIX IIO3BOJISIET HAIJIsII-
HO IIPOJIEMOHCTPUPOBATH 3P (HEKTUBHOCTH HMAPAJLICIbHBIX BBITUCACHUN U IIPEMMYIIECTBA
ucnosibzoBanus GPU-yckopennsi.

31

1.10 Ilapannenpnasa peaamnsarusa Ha CPU

IIpobaema 1mocyegoBaTe/IbHOM 0OpPaAdOTKM

[Ipu npodunnpoBanny rmepBoHAYATLHON pean3aIun ObLIO BBISBIEHO, UTO OIePAIIUS
yrenust u napcunra CSV-daiia pasmepom 2.3 I'B 3annmMaer 3HaUnTE/IbHYIO YaCTh Bpe-
MEHU BBINOJIHEHUS MIporpaMmMbl. [locieoBaresibHoe UTeHnE TAKOTO 00bEMa JTAHHLIX HA
OJIHOM y3JI€ IIPUBOIUIIO K HEIPDEKTUBHOMY UCIOJIH30BAHUIO BHIUYUC/IUTEHHBIX PECYPCOB
KJIacTePa, TaK KaK OCTaJbHBIE Y3JIbl TPOCTANBAIN B OXKUJIAHUN JTAHHBIX.

IlapanaaenbHOEe dTeHUE C IepeKpPbITEM

JL1s1 pertieHust 9Toit MpobIeMbl OBLIO PeAJTH30BaHO HapaJlie/ibHoe dTeHne aiiia, Ipu
KoTopoM Kaxkjaelii MPI-pank dumraer TobKO €BOIO dacTh baitaa. Asropurm paboraer
CJIEIYIOIIUM 0OPa30M:

1.

Boruucnenue muarnazoHoB 0aiiT: pasmep daiiyia JeUTCS Ha YACTH ITPOIOPIIH-
OHAJILHO JIOJISIM, YKa3aHHLIM B mepeMeHHoi okpyzkenusg DATA_READ_SHARES. /Insa
KasKJI0T0 PaHKa BBIUUC/ISIETCS Iuana3oH 6aiT [start, end), KOTOpBIit OH JOZKEH PO~
YUTATD.

JlobaBiieHNEe MEPEKPBITUA: K KaKJIOMYy JIMAIla30Hy J100aB/IAETCHd MEePEKPbITHE
pasmepom READ_OVERLAP_BYTES (no ymosaanuio 128 KB). D1o HeobxommMo st
KOppeKTHOI 00paboTkn cTpok CSV, KOTOpbie MOT'YT OBITh pa3/ie/ieHbl Ha TPAHUIIAX
JTMaTa30HOB!

start,q; = max(0, start — overlap)
end,q; = min(file_size, end 4 overlap)

. ObpaboTKa rpaHUI] CTPOK:

e Pank 0 npomyckaer 3arosoBok CSV (mepByto CTpOKY) U HAYMHAET [MAPCUHT
CO BTOPOI CTPOKHU.

e Panku 1...n—1 npomycKaioT HEMTOJIHYIO CTPOKY B HadaJle CBOEro /Inalna3oHa,
HaYMHAsS [APCUHT C IIEPBOI'O CUMBOJIA HOBOI CTPOKHM IOCJIE \N.

e Pank n — 1 (mocsiegnmit) auraer J0 KoHna daiiia, ocTaabHble DAaHKH 3aKaH-
YUBAIOT YTCHUE Ha MOCACIHEM CHMBOJIC \N IepeJ KOHIIOM JIUala30Ha.

Takoit moaxoyd obecriednBaeT pPaBHOMEPHOE paclpejesieHue Harpy3Ku 110 YTEHUIO
MEKJIy y3JaMU KJIaCTepa U MCKJII0YaeT JyO/JupOoBaHME WU TOTEPIO JIAHHBIX HA I'DAHU-
1aX JIMAIa30HOB.

Arperanus JaHHBIX IO IIEPHOIAM

[Tocyie mapaJsiiesIbHOrO UTEeHUsI KaxKJIbli pAHK MMeeT CBoit Habop 3amuceit Record.
Arperarus BBITIOJTHIETCS JIOKAJIBHO Ha KAXKJIOM DAHKE:

1. 3anucu IIocJjie10BaTeJIbHO O6pa6aTI)IBaIOTCH, JJIA Ka)K,ILOfI 3alliCH BbIMHUCJ/IA€eTCAd NH-

JIEKC TIepuojia:

period = |timestamp/AGGREGATION INTERVAL |

32

2. ,Z[JIH KazKJI0I'o 11epuojia HaKallJIMBAalOTCA CJIEAYIONNE CTaTUCTUKNU:

Cymma cpeannx nen: » .(Low; + High;)/2

e Munnmasbroe u MakcuMasbHoe 3Hadenre Open: min(Open;), max(Open;)
e Munnmasbnoe n MakcnMmasbhnoe 3uadenne Close: min(Close;), max(Close;)
e KosmaecTBo 3amuceit B nepuoje: count

3. llpum cmene mepmojia CTATUCTUKN COXPAHSIOTCA B CTPYKTYPY PeriodStats, m nadu-
HaeTCd HAKOIJICHUE JJId CJICAYIONEro IIepuoa.

Arperarust Mmoxker BorosHaThcst Ha CPU (mocsiienoBaresibHast 06paboTKa) WM Ha
GPU (mapasensras obpaborka ¢ ucnosb3oBanrem CUDA). Ilpu megocrymnocrn GPU
aproMaTndecku BoinostasieTcs fallback ma CPU-Bepcuro.

Yaanenne rpaHUIHBIX MTEPUOIOB

N3-3a mapaJjiebHOro 9TeHUs C MePEKPBITUEM TEPBbI U MOCETHUN TEePUOJIbI KaXK-
JIOTO pPaHKa MOTYT COJIepyKaTbhb HEeNoJHbIe JaHuble. Hampumep, eciu rmeproj; oXBaTbIBaeT
BPEMEHHOI UHTEpBa [t1,12), & PAHK IPOYUTAJI 3AIMCH TOJBKO HaunMHas ¢ t; + §, TO cTa-
TUCTUKH JIJIT 9TOTO MePHOJIa OY/IyT NCKAXKEHBI.

st yerpanenust 3Toit mpo0JieMbl puMensiercst GyHKIus trim_edge_periods:

e Pank 0 yiansger TOJBKO MOCJIEIHI TTepro/l (IIepBhIil TIePUoJ FapAHTHPOBAHHO MOJI-
HBII, TaK KaK YTeHne HAYMHAETCs ¢ Hadasa (daiiia).

e Panku 1...n — 2 yJa/jdioT NepBBIil U MOCIEHUN T€PUOIHI.

e Pank n — 1 yjassier TOJIbKO MEPBbIil eproJl (TOCIeTHUN IePUO, TADAHTUPOBAHHO
HOJIHBII, TaK KaK YTeHne 6T JI0 KOHIa daiia).

HapaﬂﬂeﬂbeIﬁ IIOMCK MHTEepPBaJIOB N3MEHEHUA II€HbI

[Tocne arperarum KaxKjablil paHK HUMeeT CIUCOK 1epuosioB PeriodStats, ymopsio-
YEHHBIX 110 BpeMenu. J[isd mapaJiie/ibHOrO MOuCKa MHTEPBAJIOB UCIIOIL3YeTCA CJITY IO
aJITOPUTM:

1. Ilpuém maHHBIX OT MPEJbIAYINEero paHKa: paHk ¢ > (0 oKujgaeT OT paHKa
1— 1 madopmalnnio o HeaBepIIeHHOM HHTepBaJie. Ecu mpe by il pank mepeia
Hava/I0 MHTEpBaJia, TEKYIIUil PaHK IIPOI0/IKAET ero 00paboTKy.

2. JlokanbHass 00paboTKa MEePUOAOB: PAHK IOCIEI0BATEIHHO OOXOIUT CBOU MEPHU-
OJ1bl, IPOBEPss yCJIOBUE U3MEHEHUs IE€HbI:

| AVEcurrent — AVEstart |
avgst art

change = > 0.10

Eciu yciioBue BBINIOJIHEHO, NHTEPBAJ 3aBEPINAECTCS U COXPAHAETCS B PE3YJIbTaTHhI.
Haunnaercst HOBBINT MHTEpPBAJI.

33

3. Ilepesiaua JaHHBIX CJEIYIONIEMY PAHKY: €C/IM Y PAHKa OCTaJICd He3aBePIIEH-
HBII uHTEpBaJ (HE JocTUTHYTO n3MeHenue Ha 10%), nadopMalus o HavYae ITOro
UHTEpBaJa epempaércs pauky ¢ + 1 gyepez MPL.

Taxkoit mojaxom obecrevnBaeT KOPPEKTHOCTH MTapaJIIeIbHOTO TIONCKa NHTEPBAJIOB: MH-
TePBaJIbl, IIEPECEKATIOITIE I'PAHUIIBI JAHHBIX MEXK Ty PAHKaMU, KOPPEKTHO 00padaThIBAIOTCS
qepe3 Iepejiady COCTOsIHUS 110 IelI0YKe.

Cobop pe3yabTaToB

[Tocie 3aBepiiienus JOKaJIbHONE 00pabOTKK paHK () cobupaeT Hali/leHHbIE MHTEPBAJIbI
OT BCex ocTajbHbIX paHkoB dyepe3 MPI, coprupyer ux 1o Bpemenu nadasia U 3allChIBAET
B BBIXOJIHOM bailsr result.csv.

34

1.11 GPU-yckopeHue arperamnum JJaHHBIX

O6mmit anroputm GPU-arperarmun

Arperamusa mganueix Ha GPU peammszoBana B mojysie gpu_plugin.cu U HCIOJIb3Y-
er 6ubsmoreky CUB (CUDA Unbound) misa sdbdexrusHoii mapasienbHoit 06paboTKu.
OO1uit aJIrOPUTM COCTOUT U3 CJICIYIONINX IIAroB:

1. KonmupoBanue nanabix Ha GPU: maccusbl timestamp, open, high, low, close
kornmpytorcst u3 orneparubaoit mamsatu CPU B mamars GPU.

2. Beruuciaenue NMHAEKCOB I1€punoJa0B: JIJid K&)K,ZLOIU/I 3alluCHh ITapaJlJIeJIbHO BBIYUC-
JideTcd NHICKC IIepuruo/ia.

period id; = |timestamp,/AGGREGATION INTERVAL |

Wcnonb3yercs 1MpocToe s Ipo ¢ OJJHOMEPHOI CeTKOM OJIOKOB.

3. Run-Length Encoding (RLE): npumensiercsi oneparusi RLE u3 6ubimoreku
CUB 11 HaxoxK/IeHUsI YHUKAJIBHBIX TOC/IEI0BATE/ILHBIX TIEPUOJIOB U TOJACIETa KO-
JIMYIECTBA 3amuceil B Kax oM repuoge. Ha Bbixome mosrydaem:

e MaccuB yHUKAJIBHBIX eprosioB: [period,, period,, ..., period,, ;]

e MaccuB jyimH nocsieioBaTesibHOCTEl: [countg, county, . . ., count,, ;]

4. Exclusive Scan: npumensercs npedukcHas cymma (exclusive scan) K maccuBy
JUTAH JIJIsT BBIYUCTIEHUS CMeIeHni Havdaia KaXKJ0ro Mepro/ia B MCXOTHOM MaCCHBE

JaHHDBIX!:
i—1

offset; = Z count;

j=0

5. Arperanus Mo mepuoiam: i KarkKJIOro IIepHoja HapasuleJbHO BBIUUC/IAIOTCHA
CTATUCTUKE (Cpe/Hee 3HAYCHUE, MUHUMYMbI U MaKCUMyMbl). Vcrnosb3yercs omHo
U3 JIBYX $JIep B 3aBUCUMOCTH OT HACTPOEK (CM. CJIeIyIomuil pasmien).

6. KonupoBanue pe3dyabraTtoB obpaTrHo Ha CPU: arperuposanubie cTaTuCTUKN
konupyitores u3 namatu GPU obparno B oneparusnyio namsats CPU.

JIBa BapuaHTa gaep arperaiuu

st arperarum 1o mepnoiaM peasim3oBano jaBa BapuanTta CUDA-samep, ontuMusnpo-
BaHHBIX JJId PA3HBIX CIICHAPUEB NCIOJIb30BAHULI:

1. Bnounoe sinpo (Block Kernel):

Ucnonn3yercsa korya USE_BLOCK_KERNEL=1. OnTuMusupoBaHO Jjis CJIydasi, KOrJa B
KazKJIOM Trepuojie MHOro 3anmceil (6osbiioit AGGREGATION_INTERVAL).

Ajtroput™m pabOTHI:

e O imH 6JIOK TOTOKOB 00pabaThIBAET OJINH TEPHUOJ.

e [loroku BHYTpHU 6J/I0Ka ITapaJslielbHO 00padaThIBAIOT 3aIINCH TIEPUO/IA, KAXKIbIH 110-
TOK HaKallJINBa€T JIOKAJIbHBIE CTATUCTUKH.

35

e Vcnonn3yercsa shared memory 1t IpOMEXKYTOYHOIO XpaHEHUsT PE3Y/ILTATOB.

e Aromapuble omneparun (atomicAdd, atomicMin, atomicMax) HMCIOJIB3YIOTCS ISt
O6'beILI/IHeHI/IH JIOKAJIbHBIX PE3YJ/IbTAaTOB IIOTOKOB.

e [lepBbrit oTOK 6JI0KA 3alUCHIBAET (DUHAIBHBINA PE3Y/ILTAT B IVIOOAJILHYIO MAMSTD.

[IpenmytiecTBa: 3pdeKTUBHOE UCIIOIB30BAHNE TTAPAJLICTN3Ma BHYTPU MTEPUOIA, MU-
HUMU3aI oOpalleHuil K 1y1odaabHoi nmamMaTu 3a caéT shared memory.

2. IIpocroe sapo (Simple Kernel):

Ncnionbayercs kKoryga USE_BLOCK_KERNEL=0. OuTuMu3upoBaHO I CJIydast, KOT/Ia I1e-
PUOOB MHOI'O, HO B KaKJOM IIE€PUO/Ie MaJIO 3aluceit (Maﬂbn‘/’l AGGREGATION_INTERVAL).

Astropur™m paboTHI:

e OuH OTOK 0O6pabaThIBAET OIUH MEPUOJ, ITOJTHOCTHIO.

e [lorox I1ocJsie 10BaTE/JIbHO O6XO,ZLI/IT BCe€ 3alliCu CBOEr'o liepuojia, HaKallJInBad CTaTHU-
CTHUKH.

e He ucrnonb3yercs shared memory u aTromMapHbie Olepalum.
e Pesyibrar cpasy 3anmcbiBaeTcs B 1JI00ATBHYIO TAMATh.

[IpenmytiecTBa: orcyTcTBue overhead Ha CHHXPOHUBAIUIO TTIOTOKOB U ATOMAPHbIE OTIe-
pannu, 3pHEeKTUBHO TPU OOJILITOM KOJNIECTBe HE3aBUCUMBIX IIEPHUOJIOB.

Bpi6op sapa:

Bribop MexK 1y siipaMu OCYIIECTBIIIETCs depes epeMennyto okpyKennst USE_BLOCK_KERNEL:

e BiiovHOE SIpO MpeImouTuTeIbHO IPH arperaiun o JaasiM/gacam (86400 man 3600
CEKYHJT) - MHOTO 3aICceil B KayKIOM [epHO/IE.

e I[Ipocroe sapo MpemoITUTEe/IbHO IPK arperanun mo MuHyTaM/cexynaam (60 mm
10 cekyH[) - MaJIO 3ammcell B KaXKJIOM [IEePUOJie, HO MHOI'O [EPUOJIOB.

36

1.12 Koudurypamnuga depe3 repeMeHHbIe OKPYKEHHsI

Bce nacTpoiiku mapaJiiesibHOroO MPUJIOZKEHNsT BhIHECEHBI B IIEPEMEHHbBIE OKPY KeHUsI,
koTophie 3agarorcss B SLURM-ckpumre run. slurm. 9To obecriednBaer rtOKOCTb HACTPOIi-
K1 63 HeoOXOIMMOCTHU TTEPEKOMITUJISIIIANA TPOI'PAMMBI.

Onucanme mepeMeHHbIX OKPY2KEHUS

e DATA PATH - nommerit myts Kk CSV-daitny ¢ Bxogueivm ganabivm. Paitn qosr-
JKeH ObITh JIOCTYIIEH Ha BCeX y3JaxX Kjacrepa (PeKOMeHyeTcsi MCIOJb30BaTh 00-
MLy JAUPEKTOpHIo, Harmpumep, depe3 NFS).

[Ipumep: /mnt/shared/supercomputers/data/data_10s.csv
e DATA READ SHARES - 10,11 JaHHBIX JIId KazKJIOI'0 PpaHKa, IPU apaJiieb-

HOM uTeHuUU paityia, pasjesénnbie 3amnaTbiMu. [lo3BossieTr HEpaBHOMEPHO pacipe-
JIEJIUTh HArpy3Ky 110 YTEHUIO, €CJIU Y3JIbl UMEIOT Pa3HYI0 IIPOU3BO/IUTE/IbHOCTD.

[Tpumep: 10,11,13,14 o3nadaer, 9To daitsi OyjIeT pa3/e/éH Ha YaCTU ITPOIIOPIIAO-
HasbHo 10 : 11 : 13 : 14. Ecin KondecTBO 3HaUeHNI HE COBIIAIAET ¢ KOJIUIECTBOM
PaHKOB, MCIIOJIB3YETCsl PABHOMEDPHOE PacCIpe/ie/IeHIe.

e READ OVERLAP BYTES - pasumep nepekpbITus B OaiiTax IpH Hapasiieb-
HoM ureHnn aitna. Heobxomum my1st KoppekTHoit obpaboTrku crpok CSV Ha rpa-
HUTAX JUAITA30HOB. 3HAYEHNE JIOJIZKHO OBITH JOCTATOYHBIM JIJIsI Pa3MEIeHnsT XOTsI
6b1 ojHOI TTosTHOI cTpokn CSV.

Buauenue mo ymosrdanuio: 131072 (128 KB)

e AGGREGATION INTERVAL - unreppas arperanun B cekynjgax. Onpefe-

JISIET pa3Mep BPEMEHHOIO IEPHUOJIa, 0 KOTOPOMY I'PYHIIUPYIOTCS JTaHHbIE.

Tunuanoie 3HaYCHA:

— 60 - arperanud 110 MUHYTaM
— 600 - arperanus 1o 10 MuHyTaM
— 3600 - arperanug 1o 4acaMm
— 86400 - arperalius 110 JHAM
e USE CUDA - duar ncnonpsosanusa GPU mia arperamum nanneix. Eciom ycra-

HOBJIEH B 1, mporpamma momnbitaercsa ncnoib3oBarb GPU. Ecoiu GPU menocrynen
nmn (uar yeranossiern B 0, ucnob3yercss CPU-Bepcus arperamnumn.

Buauenus: 0 (oTkioueHo) win 1 (BKJIIOYEHO)

e USE BLOCK KERNEL - sri6op sapnanta CUDA-apa nma GPU-arperanum
(neitcrByer Tosbko mpu USE_CUDA=1). Omupejessier, Kakoe gapo OyJeT UCIIOJIb30-
BaThCA I MMapaJiieabaoit oopadborku na GPU.

SHAYCHUL:

— 0 - UCIIOJIL30BATD IIPOCTOE SIPO (OJIMH TOTOK Ha, IIEPUOJ)

— 1 - ucnosb3oBaTh 6J09YHOE PO (01uH GJI0K HA TIEPUO)

37

DO WN -

Pekomenanuu mo BeIOOpPY:

— st 6osbinux wHTEpBaIoOB arperaiuu (1au, dackl) - USE_BLOCK_KERNEL=1
— st MasIbIx MHTEPBAIOB arperanuu (MUHYThI, ceKyH/bI) - USE_BLOCK_KERNEL=0

[Ipumep koudurypamnuu B run.slurm:

export
export
export
export
export
export

DATA_PATH="/mnt/shared/supercomputers/data/data_10s.csv"
DATA_READ_SHARES="10,11,13,14"

READ_OVERLAP_BYTES=131072

AGGREGATION_INTERVAL=60

USE_CUDA=1

USE_BLOCK_KERNEL=0

38

1.13 CrpykTypa IpoeKTa
Mcxomublit TPOEKT COJEP:KHUT B cebe CJIeIyIoIue 3aBUCUMOCTH:
e CUDA-Toolkit 12.8;
e OpenMPI 3.
MO}KHO BBIJCJ/JIUTH CJICAYIOIIUEC OCHOBHBLIC CYHIHOCTHU:

e run.slurm - SLURM-ckpunr s 3amycka mapaJsiiebHOrO IPUIOKeHusT Ha 4 y3-
JIaX ¢ HACTPOWKOW IMepPEeMEeHHBIX OKPYKeHHUs (IyTh K JaHHBIM, JIOJH JIAHHBIX JIJIsI
KasKJIoro paHka, MHTepBaJ arperaruu, ucrnojb3oBanne CUDA). Vexoaubiii Teker
daiina npeacrapien B [Ipuioxenne A;

e Makefile - daiis cucTeMbl COOPKHU, OIMUCHIBAIOMINI KOMIIAIIIO C++ MCXOTHUKOB
¢ omornibio mpic++ n xkommuaanumio CUDA-marnaa ¢ moMoIbso nvee, a TakKe
IpaBuJIa 3amycka u oancTku. Mexommsrit Teker daitna mpeacrasien B [Ipuioxernne
B.

)

e src/main.cpp - ocHoBHag MPI-mporpamma: KoopamHUpYyeT BBITOTHEHHE TapaJi-
neapHOro urenust CSV aHHBIX, arperalyo JaHHBIX 10 BDEMEHHBIM MeprojiaM (Ha
CPU wim GPU), nouck nHTEpBaJIOB U3MEHEHHsI [IEHbI ¥ 3alliCh Pe3yabTaros. M-
XOJIHBIN TeKeT (haitna npejcrapier B [Ipuioxenue Bj

e src/csv_loader.cpp, src/csv_loader.hpp - MOmy/Ib HapasIebHON 3arpysKn
CSV-aiia: kaxapiiit MPI-pank auraer cBoto gacTh (aitia ¢ mepekpbITHeM JJIsd
00paboTKM rpaHuIl CTPOK, mapcut 3anucu Bitcoin qanabix. Mexoaubiit TekeT daitra
npejacrtasieH B [Ipuioxenne I

e src/aggregation.cpp, src/aggregation.hpp - MOLy/Ib arperanuy BPEMEHHBIX
psiios na CPU: rpynmmpyer 3ammcu 1o BpeMEeHHBIM HHTEPBAJIaM, BHIUACISET CPE/JI-
nee 3uadenue (Low-+High)/2, Mummmymer n makcnmymsr Open/Close 3a KaxK/blif
nepuof. Uexommbpriit Teker daita npecrasien B [Ipmnoxkenne /1

e src/gpu_loader.cpp, src/gpu_loader.hpp - MOJIyJb JAMHAMUYECKON 3arpy3Ku
GPU-mwraruna: nposepsiet pocrynnocts GPU, 3arpykaer dynkiun u3 1ibgpu_compute. so,
npeobpasyer ganubie u3 AoS B S0A i nepeadn va GPU. Ucexoanbrit Teker daii-

Ja mpejactasien B [Ipunoxenne Ej

e src/gpu_plugin.cu - CUDA-monyns arperanun jganusix Ha GPU: ucnosbsyer
oubmoreky CUB s RLE u scan onepamnmii, peasinsyer jBa sijipa arperarym
(6J101HOE J1j1sT GOJIBIIIX HHTEPBAJIOB U IIPOCTOE JIJisi MHOXKECTBA MAJIBIX TIEPUOJIOB).
Nexonmbrit Teker daitra npejcrasiien B [Ipuioxkenne 7K

e src/intervals.cpp, src/intervals.hpp - MOJy/Ib NApaJIIeIbHOTO IIOUCKA WH-
TepBaJIOB M3MEHEHMs IIeHbI: KaK/Iblil PaHK 00pabaThIBaeT CBOIO YaCTh II€PUOJIOB,
repeaéT He3aBepIIEHHbIe UHTEPBAJIbI ciejyiomeMy panky depe3 MPI, cobupaer
pesyabraTel Ha panke 0. cxommbiit Teker daitna npegcrasien B [Ipuioxkenne 3;

e src/utils.cpp, src/utils.hpp - BcIOMOraTe/IbLHBIN MOJY/Ib: YTEHHE II€PEMEH-
HBIX OKPYZKEHHS, BBIUNCIECHUE TNATa30HOB OalT JIJIs MapaJljieIbHOro YTeHus daii-
J1a, yJaJeHne TPaHUIHBIX IIEPUOJIOB, MToIydeHne pa3Mmepa daitta. Vcexoaupril TekeT
daiita npeacrasien B [Ipunioxkenne I

39

e src/period_stats.hpp - 3arosoBouHbIil daill ¢ olpejesieHueM CTPYKTYPbI
PeriodStats, xpansineil arpernpoBaHHble CTATUCTUKU 33 OJIMH BPEMEHHOI Iepu-
ox (cpexnnee 3navenne, MunuMyMbl 1 MakcumyMbl Open/Close). Mcxomnbiii Teker
daiita ipejcrasiien B [Ipuioxkenne K

e src/record.hpp - 3aroJI0BOYHBIN (aila ¢ onpejiesieHneM CTpyKTypbl Record i
xpanenus oot 3anucu u3 CSV-daiiia Bitcoin (timestamp, open, high, low, close,
volume). Vcxonubriit Teker daitna npejgcrasien B [Ipuioxenne JI;

e data/data_10s.csvV - TEKCTOBBI (haill ¢ BXOJHBIMU JaHHBIMU O cTOMMOCTH Bitcoin
o kaxkabpiM 10 cekyrmam B popmarte CSV;

e result.csv - BLIXOJHOI (paila ¢ HailJeHHBIME MHTepBaJIaMU U3MEHEHUs IIeHbl He
Menee yeM Ha 10%.

Tak>ke B paMKax IMPOEKTa UCIOIb3yEeTC CHCTEMa aBTOMaTU3MPOBAHHON cOOpKH. Jlj1st
cOOPKM 1 3allyCKa MIPOeKTa HeOOXOIMMO BBIIOJHATE CJIeIYIONINe KOMAaHIbI:

1 make
2 make run

40

SAKJITOYEHUNE

B xoze BbimosiHeHus J1a00paTOpHOl PabOTHI OBLIM PEIIeHbl 3aJa4uu, HallpaBJIeHHbIE Ha,
OCBOEHUE MMapaJlIe/IbHbIX BBIYUCCHUI C MCIIOJIH30BAHIEM PA3HOPO/IHBIX TUIIOB BbIYUC/IU-
TeJIbHBIX PecypcoB. B pesyibrare paboThl yIaaoch:
e Cozjarh BUPTYyaJIbHbIE MAIUHBI, O0ECIIEYMBAIONINE BBIMOTHEHUE 3aJad KaK Ha
GPU-yznax, tak nu na CPU-y3nax;

e Hacrpouts cerb jiutsa obecrievenns cTaOUIBHON CBA3M MEXK Ly XOCT-CUCTEMON U BUP-
TyaJIbHBIMU Y3J1aMU;

e PeasnzoBarh mapaJuiesibHOe MPUJIOKeHne ¢ ucrosb3oBanneM Mexannsma OpenMPI,
3a/JIefiCTBYIONIEE PEeCyPChl PA3HOPOIHBIX Y3JI0B;

e Vzyuurs texnogoruu CUDA, OpenMPI, Slurm.

Boum uzydensr Trexuosiornn OpenMPI, CUDA Toolkit u 6ubsmoreka CUB. B pamkax
paboThl ObLTO pa3zpaboTaHo MapasiiebHOe TpUIoKeHne Ha s3bike C-+-, NCIOIb3YIoIee
PA3HOPOHBIN BU BBIYUCIUTENIHHBIX PECYPCOB [IJIsI aHAJIN3a BPEMEHHBIX PSIIOB UCTOPH-
YeCKMX JAHHBIX O crouMocTu Bitcoin.

Pazpaborannas mporpaMma BBIIOJIHAET HapasIebHyI0 arperaiuio BPEMEHHbBIX psi-
J0B 1 IIOUCK MHTEPBaJIOB S3HAYUTE/JIbHOI'O USMCHEHUA IIECHDbI. K.HIO‘—IeBbIe OCO6eHHOCTI/I pea-
JIU3AINT:

e [Tapamnenbroe urernne CSV-daitna pasmepom 2.3 I'b ¢ ucnoab3oBaHneM TeXHUKI
MEPEKPBITUS JTUATIA30HOB JIjId KOPPEKTHOIW 00pabOTKM IpaHuUll CTPOK.

o ['ubpuHas arperaiys JaHHBIX, T0/yIepKuBaoNias Borancienns Kak Ha CPU (mo-
cienoBaresibHas 0b6paborka), Tak u Ha GPU (mapasuiesnbias o6paboTka ¢ MCIOJIb-
soBarnem CUDA).

e /Ipa BapmanTa CUDA-smep: 6109HOe PO Jij1sd OOIBINTIX WHTEPBAJIOB arperainun
(IHU, 9achl) ¥ IPOCTOE SIAPO JIJI MAJIBIX MHTEPBAJIOB (MUHYTHI, CEKYHJIbI).

o Jlunamuueckas 3arpyska GPU-mraruna depes dlopen, mo3BoJisioinias 3aiycKaTh
npuioxkenne Ha ysiaax 6e3 GPU 6e3 nmepekoMInisiimm.

e [lapasuiesbHbBIN TONCK UHTEPBAJIOB U3MEHEHUs TIeHbI C Tepeadeil He3aBepIEHHbBIX
MHTEPBAJIOB MexK 1y pankamu depe3 MPI.

e ['ubkasa kouduryparusa depe3 nepeMeHHble OKPYKEHUs, MO3BOJIAIONAsd HaCTPau-
BaTh HapaMeTpbl PA0OTHI 0€3 U3MEHEHUsT NCXOIHOTO KO/Ia.

s HarrsgaHoit pemoHcTparun 3(hOEeKTUBHOCTH TapaJsie/IbHbIX BBITUCIEHUN ObLI
pa3paboTaH CKPUIIT JUHEHHON MHTEPIIOIAINNA JAHHBIX, YBEJIUIUBIINN 00BEM MCXOTHOTO
nabopa janubix ¢ 360 MB 10 2.3 I'B. 910 1103B0O/INIIO JOCTOBEPHO ONEHUTD IIPEUMYIIIECTBA
napaJsuienbnoit oopadorku u GPU-yckopenus.

B pamMkax paboThlI IOJIyIeHbI IPAKTUICCKUE 3HAHUS O T€TEPOTeHHBIX BBIUNC/IUTE b=
HBIX CHCTEMAaX U PEAJM30BAHO MOJTHOMDYHKIIMOHAIBHOE TapaJlie/IbHOe MPUIOXKeHne, 3¢h-
(PEKTUBHO HCIIOJIL3YIONIEEe PECYPChl PA3HOPOIHBIX BBIYUC/IATENEH J7Isi 00paboTKH 00JTh-
mux 00bEMOB BPEMEHHBIX PsJIOB.

41

Crucok Jureparypbl

[1] Zielak - Bitcoin Historical Data // kaggle URL:
https://www.kaggle.com /datasets/mczielinski/bitcoin-historical-data (mara 00-
pamienusi: 10.01.2026).

[2] Hyper-V Documentation // Microsoft URL: https://learn.microsoft.com /en-
us/virtualization /hyper-v-on-windows/ (mara obpamenus: 10.01.2026).

[3] Ubuntu OS Docs // Ubuntu URL: https://ubuntu.com/server/docs (nara obparenust:
10.01.2026).

[4] New-VMSwitch: Jdokymenrarmss ~ PowerShell // Microsoft 365 URL:
https://learn.microsoft.com /en-us/powershell / module/hyper-v/new-
vmswitch?view=windowsserver2025-ps (mara obparmennst: 10.01.2026).

[5] New-NetIPAddress: Hokymenranusa PowerShell // Microsoft 365
URL: https://learn.microsoft.com/en-us/powershell /module /nettcpip /new-
netipaddress?view=windowsserver2025-ps (mara obpamienus: 10.01.2026).

[6] New-NetNat: Joxkymenramms ~ PowerShell — // Microsoft 365 ~ URL:
https: / /learn.microsoft.com /en-us/powershell /module /netnat /New-
NetNat?view=windowsserver2016-ps (nara obpamenus: 10.01.2026).

[7] Add-NetNatStaticMapping: lokymentarmst ~ PowerShell // Microsoft 365
URL: https://learn.microsoft.com /ru-ru/powershell /module /netnat /add-
netnatstaticmapping?view=windowsserver2022-ps (mara obparmenus: 10.01.2026).

[8] Get-VMHostPartitionableGpu: Tokymenrarus PowerShell // Microsoft 365
URL: https://learn.microsoft.com/en-us/powershell /module/hyper-v/get-
vmhostpartitionablegpu?view=windowsserver2025-ps (gara obpamenus: 10.01.2026).

[9] Set-VM: JokymenTanust PowerShell // Microsoft 365 URL:
https:/ /learn.microsoft.com /en-us/powershell /module /hyper-v /set-
vm?view=windowsserver2025-ps (zmara obparmenns: 10.01.2026).

[10] RFC 1094: NFS: Network File System Protocol Specification // Sun Microsystems,
Inc. URL: https://datatracker.ietf.org/doc/html/rfc1094 (mata obparmenus:
10.01.2026).

42

DD = b e
QOO THR WO OO U WD =

DO DO DO DO
= QO DN =

DO DD DO
~J O Ot

IMTPNJIOZKEHUE A

#!/bin/bash

#SBATCH --job-name=btc
#SBATCH --nodes=4

#SBATCH --ntasks=4
#SBATCH --cpus-per-task=2
#SBATCH --output=out.txt

IyTs k baitmy ZamHHNX (ZOIXeH CymecTBOBAaTh Ha BCEX y3Jax)
export DATA_PATH="/mnt/shared/supercomputers/data/data_10s.csv"

Jlonu OaHHHEX IJs KaxZOro paHka (cCyMMa oIpefenseT IPOIOPIWH)
export DATA_READ_SHARES="10,11,13,14"

PasMep mepekphTHs B b6aliTax Iua o6paboTKH T'pPaHUI, CTPOK
export READ_OVERLAP_BYTES=131072

UHTepBan arperamum B cekyHzax (60 = mumyTh, 600 = 10 munyT, 86400 = nuu)
export AGGREGATION_INTERVAL=60

Vcnonezosare nu CUDA nmms arperanum (0 = mer, 1 = ga)
export USE_CUDA=1

VcmombsoBaTh su 6iouHOe sifipo (6hcTpee mns Gonbuux HHTepBasoB, 0 = HeT, 1 = gma)

export USE_BLOCK_KERNEL=0

cd /mnt/shared/supercomputers/build
mpirun -np $SLURM_NTASKS ./bitcoin_app

43

IMTPNJIO2ZKEHUE b

1| cxx = mpic++
% CXXFLAGS = -std=c++17 -02 -Wall -Wextra -Wno-cast-function-type -fopenmp
4 NVCC = nvcc
(5j NVCCFLAGS = -03 -std=c++17 -arch=sm_86 -Xcompiler -fPIC
7| SRC_DIR = src
8| BUILD_DIR = build
9
10| srcs = $(wildcard $(SRC_DIR)/*.cpp)
% 0BJS = $(patsubst $(SRC_DIR)/%.cpp,$(BUILD_DIR)/%.0,$(SRCS))
13| TARGET = $(BUILD_DIR)/bitcoin_app
14
15| PLUGIN_SRC = $(SRC_DIR)/gpu_plugin.cu
16| pLucIN = $(BUILD_DIR)/libgpu_compute.so
17
18/ a11: $(PLUGIN) $(TARGET)
19
20| $(BUILD_DIR):
21| mkdir -p $(BUILD_DIR)
22
23| $ (BUILD_DIR)/%.0: $(SRC_DIR)/%.cpp | $(BUILD_DIR)
24| $(CXX) $(CXXFLAGS) -c $< -o $@
25
26| $(TARGET) : $(0BJS)
27 $(CXX) $(CXXFLAGS) $~ -o $@ -1d1
28
29| $(PLUGIN): $(PLUGIN_SRC) | $(BUILD_DIR)
30 $wce) $(NVCCFLAGS) -shared $< -o $@
31
32 clean:
33| rm -rf $(BUILD_DIR)
34
35 run: all
36 sbatch run.slurm
37

38 .PHONY: all clean run

44

DO b= = e
QOO UIHERE WO UHEREWN =

DO DO DO DO
= QO DN =

[\
ot

[OV]\W)) N0l \V)
[esiNeXo ol [e))

W W
DO =

34

IMTPNJIO2KEHUE B

#include <mpi.h>
#include <iostream>
#include <vector>
#include <iomanip>

#include "csv_loader.hpp"
#include "record.hpp"
#include "period_stats.hpp"
#include "aggregation.hpp"
#include "intervals.hpp"
#include "utils.hpp"
#include "gpu_loader.hpp"

int main(int argc, char** argv) {
MPI_Init(&argc, &argv);
double total_start = MPI_Wtime();

int rank, size;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

// TlpoBepsieM mocTymHOCTH GPU

bool use_cuda = get_use_cuda();
bool have_gpu = gpu_is_available();
bool use_gpu = use_cuda && have_gpu;

std::cout << "Rank " << rank
<< ": USE_CUDA=" << use_cuda
<< ", GPU available=" << have_gpu
<< ", using " << (use_gpu 7 "GPU" : "CPU")
<< std::endl;

// TNapannenbHOe YTEHWE LNAHHHIX

double read_start = MPI_Wtime();

std::vector<Record> records = load_csv_parallel(rank, size);
double read_time = MPI_Wtime() - read_start;

std::cout << "Rank " << rank
<< ": read " << records.size() << " records"
<< " in " << std::fixed << std::setprecision(3) << read_time << " sec
<< std::endl;

// Arperamus mo mepuozaMm
double agg_start = MPI_Wtime();
std::vector<PeriodStats> periods;

if (use_gpu) {
int64_t interval = get_aggregation_interval();
if (laggregate_periods_gpu(records, interval, periods)) {
std::cerr << "Rank " << rank << ": GPU aggregation failed, falling back to CPU" << std::endl;
periods = aggregate_periods(records);
}
} else {
periods = aggregate_periods(records);

double agg_time = MPI_Wtime() - agg_start;
std::cout << "Rank " << rank

<< ": aggregated " << periods.size() << " periods"
<< " [" << (periods.empty() ? O : periods.front().period)

45

107
108
109
110
111
112
113
114
11513

<< ".." << (periods.empty() 7 O : periods.back().period) << "]"
<< " in " << std::fixed << std::setprecision(3) << agg_time << " sec"
<< std::endl;

// Voansem xpatfinue mepuombl (MOTYT 6HTBH HENONHHMHM K3-3a [apajUIeIbHOTO YTEHUS)
trim_edge_periods(periods, rank, size);

std::cout << "Rank " << rank
<< ": after trim " << periods.size() << " periods"
<< " [" << (periods.empty() 7 O : periods.front().period)
<< ".." << (periods.empty() 7 O : periods.back().period) << "]"
<< std::endl;

// TapanmenpHOe IOCTPOEHHE HHTEPBAIIOB
IntervalResult iv_result = find_intervals_parallel(periods, rank, size);

std::cout << "Rank " << rank

<< ": found " << iv_result.intervals.size() << " intervals"
<< ", compute " << std::fixed << std::setprecision(6) << iv_result.compute_time << "
<< ", wait " << iv_result.wait_time << " sec"

<< std::endl;

// Cbop mHTepBamoB Ha paHke 0
double collect_wait = collect_intervals(iv_result.intervals, rank, size);

if (rank == 0) {
std::cout << "Rank 0: collected " << iv_result.intervals.size() << " total intervals"
<< ", wait " << std::fixed << std::setprecision(3) << collect_wait << " sec"
<< std::endl;

// Bammch pesyubTaToB B daiinm (Tombko paHK 0)

if (rank == 0) {
double write_start = MPI_Wtime();
write_intervals("result.csv", iv_result.intervals);
double write_time = MPI_Wtime() - write_start;

std::cout << "Rank 0: wrote result.csv"
<< " in " << std::fixed << std::setprecision(3) << write_time << " sec"
<< std::endl;

// BeBOZ, 06WLero BpeMEHU BHIIOIHEHUS
MPI_Barrier (MPI_COMM_WORLD) ;
double total_time = MPI_Wtime() - total_start;
if (rank == 0) {
std::cout << "Total execution time:
<< std::fixed << std::setprecision(3)
<< total_time << " sec" << std::endl;

MPI_Finalize();
return 0;

46

sec

OO U= W

#include
#include
#include
#include
#include

"csv_loader.hpp"
<fstream>
<sstream>
<iostream>
<stdexcept>

IMTPNJIO2KEHUE T’

bool parse_csv_line(const std::string& line, Record& record) {

if (

line.empty()) {
return false;

std: :stringstream ss(line);

std:

try

:string item;
{
// timestamp
if (!std::getline(ss, item, ’,’) || item.empty())
record.timestamp = std::stod(item);
// open
if (!std::getline(ss, item, ’,’) || item.empty())
record.open = std::stod(item);
// high
if (!std::getline(ss, item, ’,’) || item.empty())
record.high = std::stod(item);
// low
if (!std::getline(ss, item, ’,’) || item.empty())
record.low = std::stod(item);
// close
if (!std::getline(ss, item, ’,’) || item.empty())
record.close = std::stod(item);
// volume
if (!std::getline(ss, item, ’,’)) return false;
// Volume MoXeT OHTBL IyCThHM HIH COLEPXATh AAHHHE
if (item.empty()) {

record.volume = 0.0;

} else {
record.volume

return true;

std::stod(item);

} catch (const std::exception&) {

return false;

return

return

return

return

return

std: :vector<Record> load_csv_parallel(int rank, int size) {
std: :vector<Record> data;

// YuTaeM HaCTPOHKH U3 IIEPEMEHHBHX OKDPYXEHUS
std::string data_path = get_data_path();
std::vector<int> shares = get_data_read_shares();
int64_t overlap_bytes = get_read_overlap_bytes();

// Tlomy4aeM pasmep daiina

int64_t file_size = get_file_size(data_path);

47

false;

false;

false;

false;

false;

62 // BhumcnsieM muamas3oH 6aliT ANA 5TOro paHKa

63 ByteRange range = calculate_byte_range(rank, size, file_size, shares, overlap_bytes);
64

65 // OTKpeBaeM Gaiin ¥ YUTaeM HYXHHH AUaNasoH

66 std::ifstream file(data_path, std::ios::binary);

67 if (!file.is_open()) {

68 throw std::runtime_error("Cannot open file: " + data_path);

71 // TlepexopuM K Havaly ZLuanasoHa

72 file.seekg(range.start);

73

74 // UYuraem pammHe B 6ydep

75 int64_t bytes_to_read = range.end - range.start;
76 std: :vector<char> buffer(bytes_to_read);

77 file.read(buffer.data(), bytes_to_read);

78 int64_t bytes_read = file.gcount();

79

80 file.close();

81

82 // TlpeobpasyeM B CTPOKy IJf yOO6CTBA IapCHHTA
83 std::string content(buffer.data(), bytes_read);
84

85 // HaxonuM mosuluio Havana IIepBOX IOJHOH CTPOKHU
86 size_t parse_start = O;

87 if (rank == 0) {

88 // TlepBHil paHK: IOPOIyCKaeM 3arojioBoK (IlepByl CTPOKY)
89 size_t header_end = content.find(’\n’);

90 if (header_end != std::string::npos) {

91 parse_start = header_end + 1;

92 }
93 } else {

94 // OcTanbHbe paHKH: HadWHaeM C IepBoro \n (IpomyckaeM HEIOJNHYW CTPOKY)
95 size_t first_newline = content.find(’\n’);

96 if (first_newline != std::string::npos) {

97 parse_start = first_newline + 1;

10]_ // HaxomuM MO3HULUI0 KOHIA IOCIefHel IOJHOM CTPOKH

102 size_t parse_end = content.size();

103 if (rank != size - 1) {

104 // He mocnenmmit paHK: mmeM mocienHuit \n

105 size_t last_newline = content.rfind(’\n’);

106 if (last_newline != std::string::npos &% last_newline > parse_start) {
107 parse_end = last_newline;

108 }
109 }
110

111 // TapcuM cTporm

112 size_t pos = parse_start;

113 while (pos < parse_end) {

]_14 size_t line_end = content.find(’\n’, pos);

115 if (line_end == std::string::npos || line_end > parse_end) {
]_16 line_end = parse_end;

117 }
118

119 std::string line = content.substr(pos, line_end - pos);
120

121 // YVéupaem \r ecmu ectp (Windows line endings)

122 if (1line.empty() && lime.back() == ’\r’) {

123 line.pop_back();

124 }
125

48

126
127
128
129
130
131
132
133
134
1353

Record record;

if (parse_csv_line(line, record)) {
data.push_back(record) ;

}

pos = line_end + 1;

}

return data;

49

OO U= W

#include
#include

#include
#include
#include
#include

std: :vec
cons

std:
if (

IMTPNJIO2KEHUE J1

"aggregation.hpp"
"utils.hpp"

<algorithm>
<cstdint>
<limits>
<vector>

tor<PeriodStats> aggregate_periods(const std::vector<Record>& records) {

t int64_t interval = get_aggregation_interval();

:vector<PeriodStats> result;
records.empty()) return result;

struct PeriodAccumulator {

};

Peri

Peri
acc.

for

double avg_sum = 0.0;

double open_min = std::numeric_limits<double>::max();
double open_max = std::numeric_limits<double>::lowest();
double close_min = std::numeric_limits<double>::max();
double close_max = std::numeric_limits<double>::lowest();
int64_t count = 0;

void add(const Record& r) {
const double avg = (r.low + r.high) / 2.0;
avg_sum += avg;
open_min = std::min(open_min, r.open);
open_max = std::max(open_max, r.open);
close_min = std::min(close_min, r.close);
close_max = std::max(close_max, r.close);
++count;

odIndex current_period =
static_cast<PeriodIndex>(records[0].timestamp) / interval;

odAccumulator acc;
add(records[0]);

(size_t i = 1; i < records.size(); ++i) {

const Record& r = records[i];

const PeriodIndex period =
static_cast<PeriodIndex>(r.timestamp) / interval;

if (period !'= current_period) {
PeriodStats stats;
stats.period = current_period;
stats.avg = acc.avg_sum / static_cast<double>(acc.count);
stats.open_min = acc.open_min;
stats.open_max = acc.open_max;
stats.close_min = acc.close_min;
stats.close_max = acc.close_max;
stats.count = acc.count;
result.push_back(stats);

current_period = period;

acc = PeriodAccumulator{};

acc.add(r);

{0

// mocnenuuit mepmon
PeriodStats stats;
stats.period = current_period;

stats.avg = acc.avg_sum / static_cast<double>(acc.count);

stats.open_min = acc.open_min;
stats.open_max = acc.open_max;
stats.close_min = acc.close_min;
stats.close_max = acc.close_max;
stats.count = acc.count;
result.push_back(stats);

return result;

ol

OO U= W

ITPNJIO2ZKEHUE E

#include "gpu_loader.hpp"
#include <dlfcn.h>
#include <iostream>
#include <cstdint>

// CtpyrTrypa pesymsTaTta GPU (gZomxHa coBmagaTh ¢ gpu_plugin.cu)
struct GpuPeriodStats {

int64_t period;

double avg;

double open_min;

double open_max;

double close_min;

double close_max;

int64_t count;

};

// Tuns dyeruuit ms GPU nnarusxa
using gpu_is_available_fn = int (*¥)();

using gpu_aggregate_periods_fn = int (*)(
const double* h_timestamps,
const double* h_open,
const double* h_high,
const doublex h_low,
const double*x h_close,
int num_ticks,
int64_t interval,
GpuPeriodStats** h_out_stats,
int* out_num_periods

)5
using gpu_free_results_fn = void (*) (GpuPeriodStatsx);

static void* get_gpu_lib_handle() {
static void* h = dlopen("./libgpu_compute.so", RTLD_NOW | RTLD_LOCAL);
return h;

bool gpu_is_available() {
void* h = get_gpu_lib_handle();
if ('h) return false;

auto fn = reinterpret_cast<gpu_is_available_fn>(dlsym(h, "gpu_is_available"));
if (!'fn) return false;

return fn() != 0;

bool aggregate_periods_gpu(
const std::vector<Record>& records,
int64_t aggregation_interval,
std::vector<PeriodStats>& out_stats)

if (records.empty()) {
out_stats.clear();
return true;

void* h = get_gpu_lib_handle();
if ('h) {
std::cerr << "GPU: Failed to load libgpu_compute.so" << std::endl;

02

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

return false;

auto aggregate_fn = reinterpret_cast<gpu_aggregate_periods_fn>(
dlsym(h, "gpu_aggregate_periods"));

auto free_fn = reinterpret_cast<gpu_free_results_fn>(
dlsym(h, "gpu_free_results"));

if (laggregate_fn || !'free_fn) {
std::cerr << "GPU: Failed to load functions from plugin" << std
return false;

int num_ticks = static_cast<int>(records.size());

// KomBepTupyeM AoS B SoA
std::vector<double> timestamps(num_ticks);
std::vector<double> open(num_ticks);
std::vector<double> high(num_ticks);

std: :vector<double> low(num_ticks);

std: :vector<double> close(num_ticks);

for (int i = 0; i < num_ticks; i++) {
timestamps[i] = records[i].timestamp;
open[i] = records[i].open;
high[i] = records[il.high;
low[i] = records[i].low;
close[i] = records[i].close;

// BusmBaeM GPU dyHKIuDO
GpuPeriodStats* gpu_stats = nullptr;
int num_periods = 0;

int result = aggregate_fn(
timestamps.data(),
open.data(),
high.data(),
low.data(),
close.data(),
num_ticks,
aggregation_interval,
&gpu_stats,
&num_periods

)

if (result !'= 0) {

::endl;

std::cerr << "GPU: Aggregation failed with code " << result << std::endl;

return false;

// KomBepTupyeM pesymbTaT B PeriodStats
out_stats.clear();
out_stats.reserve (num_periods);

for (int i = 0; i < num_periods; i++) {
PeriodStats ps;
ps.period = gpu_stats[i].period;
ps.avg = gpu_stats[i].avg;
ps.open_min = gpu_stats[i].open_min;
ps.open_max = gpu_stats[i].open_max;
ps.close_min = gpu_stats[il].close_min;
ps.close_max = gpu_stats[i].close_max;
ps.count = gpu_stats[i].count;

23

126
127,
128
129
130
131
132
1331 }

out_stats.push_back(ps);

}

// OcBoboxmaeM maMsTh
free_fn(gpu_stats);

return true;

o4

OO U= W

ITPNJIO2ZKEHUE 2K

#include <cuda_runtime.h>
#include <cub/cub.cuh>
#include <cstdint>
#include <cfloat>
#include <cstdio>
#include <cstdlib>
#include <ctime>

#include <string>
#include <sstream>
#include <iomanip>

//
// CTPYRTYpH OaHHHX
//

// PesymabTaT arperanuu OLHOTO IEPHOLA
struct GpuPeriodStats {

int64_t period;

double avg;

double open_min;

double open_max;

double close_min;

double close_max;

int64_t count;

};

//
// BcmoMoraTenbHbe (yHKIUH

//

static double get_time_ms() {
struct timespec ts;
clock_gettime (CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000.0 + ts.tv_nsec / 1000000.0;

#define CUDA_CHECK(call) do { \
cudaError_t err = call; \

if (err !'= cudaSuccess) { \
printf ("CUDA error at %s:%d: %s\n", __FILE__, __LINE__, cudaGetErrorString(err)); \
return -1; \
A\
} while(0)
//
// Kernel: Bmuuciuernue period_id mms Kaxmoro Tura
//
__global__ void compute_period_ids_kernel(
const double* __restrict__ timestamps,
int64_t* __restrict__ period_ids,
int n,
int64_t interval)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
period_ids[idx] = static_cast<int64_t>(timestamps[idx]) / interval;
}
¥
//

%)

62 // Kernel: arperamnus ommoro mepuoma (omuH 60K Ha NEPUOZ)

637/

64

65 __global__ void aggregate_periods_kernel(

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

const double* __restrict__ open,
const double* __restrict__ high,
const doublex __restrict__ low,

const doublex __restrict__ close,
const int64_tx*

const int* __restrict_

restrict

unique_periods,
_ offsets,
const int* __restrict__ counts,
int num_periods,
GpuPeriodStats*

_restrict__ out_stats)

int period_idx = blockIdx.x;
if (period_idx >= num_periods) return;

int offset = offsets[period_idx];
int count = counts[period_idx];

// Wcnompsyem shared memory Ims peAyKIuH BHyTpPH 6J0OKa
__shared__ double s_avg_sum;

__shared__ double s_open_min;

__shared__ double s_open_max;

__shared__ double s_close_min;

__shared__ double s_close_max;

// VHunuanusanus shared memory IepBHM IOTOKOM
if (threadIdx.x == 0) {

s_avg_sum = 0.0;

s_open_min = DBL_MAX;

s_open_max = -DBL_MAX;

s_close_min DBL_MAX;

s_close_max = -DBL_MAX;

}

syncthreads() ;

// JlokaJbHEE AKKyMyJIATOPH MAJs KaXZOTO IIOTOKa
double local_avg_sum = 0.0;

double local_open_min = DBL_MAX;

double local_open_max = -DBL_MAX;

double local_close_min = DBL_MAX;

double local_close_max = -DBL_MAX;

// Kaxppii moTok o6pabaThHBaeT CBOL YacTh THKOB

for (int i = threadIdx.x; i < count; i += blockDim.x) {
int tick_idx = offset + ij;
double avg = (low[tick_idx] + high[tick_idx]) / 2.0;
local_avg_sum += avg;
local_open_min = min(local_open_min, open[tick_idx]);
local_open_max = max(local_open_max, open[tick_idx]);
local_close_min = min(local_close_min, close[tick_idx]);
local_close_max = max(local_close_max, close[tick_idx]);

// PenyKlus C HCIOIb30BAaHWEM aTOMapHHX Ollepauui

atomicAdd (&s_avg_sum, local_avg_sum);

atomicMin(reinterpret_cast<unsigned long long*>(&s_open_min),
__double_as_longlong(local_open_min));

atomicMax(reinterpret_cast<unsigned long long+*>(&s_open_max) ,
__double_as_longlong(local_open_max)) ;

atomicMin(reinterpret_cast<unsigned long long*>(&s_close_min),
__double_as_longlong(local_close_min));

atomicMax(reinterpret_cast<unsigned long long#*>(&s_close_max),

o6

126 __double_as_longlong(local_close_max));

127

128 __syncthreads() ;

129

130 // TlepBbif IOTOK 3alUCHBAET Pe3yIbTAT

131 if (threadIdx.x == 0) {

132 GpuPeriodStats stats;

133 stats.period = unique_periods[period_idx];
134 stats.avg = s_avg_sum / static_cast<double>(count);
135 stats.open_min = s_open_min;

136 stats.open_max = s_open_max;

137 stats.close_min = s_close_min;

138 stats.close_max = s_close_max;

139 stats.count = count;

140 out_stats[period_idx] = stats;

141 }
1423
143

144,/

145 // Tpoctoi kernel mmsa arperanuu (OZWH IOTOK Ha IIE€PHUOK)
]_46 // Wcnomb3yeTcs KOTrZa IEPUOJOB MHOTO U THKOB B KaxXAOM Maio

14717/
148

149 __global__ void aggregate_periods_simple_kernel(

150 const double* __restrict__ open,

151 const double* __restrict__ high,

152 const doublex __restrict__ low,

153 const doublex __restrict__ close,

154 const int64_t* __restrict__ unique_periods,
155 const int* __restrict__ offsets,

156 const int* __restrict__ counts,

157 int num_periods,

158 GpuPeriodStats* __restrict__ out_stats)

159/ ¢

160 int period_idx = blockIdx.x * blockDim.x + threadIdx.x;
161 if (period_idx >= num_periods) return;

162

163 int offset = offsets[period_idx];

]_64 int count = counts[period_idx];

165

166 double avg_sum = 0.0;

167 double open_min = DBL_MAX;

168 double open_max = -DBL_MAX;

169 double close_min = DBL_MAX;

170 double close_max = -DBL_MAX;

171

172 for (int i = 0; i < count; i++) {

173 int tick_idx = offset + i;

174 double avg = (low[tick_idx] + high[tick_idx]) / 2.0;
175 avg_sum += avg;

176 open_min = min(open_min, open[tick_idx]);
177 open_max = max(open_max, open[tick_idx]);
]_78 close_min = min(close_min, close[tick_idx]);
]_79 close_max = max(close_max, close[tick_idx]);

180 }
181

182 GpuPeriodStats stats;

183 stats.period = unique_periods[period_idx];

184 stats.avg = avg_sum / static_cast<double>(count);
185 stats.open_min = open_min;

186 stats.open_max = open_max;

187 stats.close_min = close_min;

188 stats.close_max = close_max;

189 stats.count = count;

o7

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

out_stats[period_idx] = stats;

//
// TpoBepka mocTymHocTH GPU
//

extern "C" int gpu_is_available() {
int n = 03
cudaError_t err = cudaGetDeviceCount (&n);
if (err !'= cudaSuccess) return 0;
return (n > 0) 7 1 : 0

//
// TnaBHas ¢yHKRuua arperamum Ha GPU

//

extern "C" int gpu_aggregate_periods(
const double* h_timestamps,
const double* h_open,
const doublex h_high,
const doublex h_low,
const doublex h_close,
int num_ticks,
int64_t interval,
GpuPeriodStats** h_out_stats,
int* out_num_periods)

if (num_ticks == 0) {
*h_out_stats = nullptr;
*out_num_periods = 0;
return 0;

std::ostringstream output;
double total_start = get_time_ms();

//
// llar 1: BhfeleHWe NaMATH ¥ KONMpOBaHWe OaHHHX Ha GPU
//
double stepl_start = get_time_ms();

double* d_timestamps = nullptr;
double* d_open = nullptr;
double* d_high = nullptr;
double* d_low = nullptr;

double* d_close = nullptr;
int64_t* d_period_ids = nullptr;

size_t ticks_bytes = num_ticks * sizeof (double);

CUDA_CHECK (cudaMalloc (&d_timestamps, ticks_bytes));

CUDA_CHECK (cudaMalloc(&d_open, ticks_bytes));

CUDA_CHECK (cudaMalloc(&d_high, ticks_bytes));

CUDA_CHECK (cudaMalloc(&d_low, ticks_bytes));

CUDA_CHECK (cudaMalloc(&d_close, ticks_bytes));

CUDA_CHECK (cudaMalloc(&d_period_ids, num_ticks * sizeof (int64_t)));

CUDA_CHECK (cudaMemcpy (d_timestamps, h_timestamps, ticks_bytes, cudaMemcpyHostToDevice));
CUDA_CHECK (cudaMemcpy (d_open, h_open, ticks_bytes, cudaMemcpyHostToDevice));

CUDA_CHECK (cudaMemcpy (d_high, h_high, ticks_bytes, cudaMemcpyHostToDevice));

CUDA_CHECK (cudaMemcpy (d_low, h_low, ticks_bytes, cudaMemcpyHostToDevice));

o8

254 CUDA_CHECK (cudaMemcpy(d_close, h_close, ticks_bytes, cudaMemcpyHostToDevice));

255

256 double stepl_ms = get_time_ms() - stepl_start;

257

258 /7

259 // llar 2: Beumcienue period_id [ms Kaxnoro THUKa

260 /7

261 double step2_start = get_time_ms();

262

263 const int BLOCK_SIZE = 256;

264 int num_blocks = (num_ticks + BLOCK_SIZE - 1) / BLOCK_SIZE;
265

266 compute_period_ids_kernel<<<num_blocks, BLOCK_SIZE>>>(
267 d_timestamps, d_period_ids, num_ticks, interval);
268 CUDA_CHECK (cudaGetLastError());

269 CUDA_CHECK (cudaDeviceSynchronize ()) ;

270

271 double step2_ms = get_time_ms() - step2_start;

272

273 /7

274 // Wlar 3: RLE (Run-Length Encode) nns HaxOXAeHUS YHHUKAIBHHX I€PHOLOB
275 /7

276 double step3_start = get_time_ms();

277

278 int64_t* d_unique_periods = nullptr;

279 int* d_counts = nullptr;

280 int* d_num_runs = nullptr;

281

282 CUDA_CHECK (cudaMalloc(&d_unique_periods, num_ticks * sizeof (int64_t)));
283 CUDA_CHECK (cudaMalloc (&d_counts, num_ticks * sizeof(int)));
284 CUDA_CHECK (cudaMalloc (&d_num_runs, sizeof(int)));

285

286 // OmpegmensieM pasmep BpeMeHHOTO bydpepa zAms CUB

287 void* d_temp_storage = nullptr;

288 size_t temp_storage_bytes = 0;

289

290 cub: :DeviceRunLengthEncode: :Encode (

291 d_temp_storage, temp_storage_bytes,

292 d_period_ids, d_unique_periods, d_counts, d_num_runs,
293 num_ticks);

294

295 CUDA_CHECK (cudaMalloc(&d_temp_storage, temp_storage_bytes));
296

297 cub: :DeviceRunLengthEncode: :Encode (

298 d_temp_storage, temp_storage_bytes,

299 d_period_ids, d_unique_periods, d_counts, d_num_runs,
300 num_ticks);

301 CUDA_CHECK (cudaGetLastError());

302

303 // KommpyeM KOIMYeCTBO YHHWKAIbHHX II€PHOZLOB

304 int num_periods = 0;

305 CUDA_CHECK (cudaMemcpy (&num_periods, d_num_runs, sizeof(int), cudaMemcpyDeviceToHost));
306

307 cudaFree (d_temp_storage) ;

308 d_temp_storage = nullptr;

309

310 double step3_ms = get_time_ms() - step3_start;

311

312 /7

313 // llar 4: Exclusive Scan gns Buuucienus offsets

314 /7

315 double step4_start = get_time_ms();

316

317 int* d_offsets = nullptr;

29

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

CUDA_CHECK (cudaMalloc(&d_offsets, num_periods * sizeof(int)));

temp_storage_bytes = 0;

cub: :DeviceScan: :ExclusiveSum(
d_temp_storage, temp_storage_bytes,
d_counts, d_offsets, num_periods);

CUDA_CHECK (cudaMalloc(&d_temp_storage, temp_storage_bytes));
cub: :DeviceScan: :ExclusiveSum(

d_temp_storage, temp_storage_bytes,

d_counts, d_offsets, num_periods);
CUDA_CHECK (cudaGetLastError());

cudaFree (d_temp_storage) ;

double step4_ms = get_time_ms() - step4_start;

//
// llar 5: Arperaius NnepuoLoB
//
double step5_start = get_time_ms();

GpuPeriodStats* d_out_stats = nullptr;
CUDA_CHECK (cudaMalloc (&d_out_stats, num_periods * sizeof (GpuPeriodStats)));

// Bubop sgmpa depes mepeMeHHyl okpykenus USE_BLOCK_KERNEL

const char* env_block_kernel = std::getenv("USE_BLOCK_KERNEL") ;

if (env_block_kernel == nullptr) {
printf ("Error: Environment variable USE_BLOCK_KERNEL is not set\n");
return -1;

}

bool use_block_kernel = std::atoi(env_block_kernel) !'= 0;

if (use_block_kernel) {
// BuouHoe siApo: onuwH 60K Ha IEPHOK, [OTOKK [apaliellbHO 06pabaTHBAalwT THUKU
// Jlyume nms 60NbLKX MHTEPBAJIOB C MHOXECTBOM THKOB B KaxIOM II€PHOZE
aggregate_periods_kernel<<<num_periods, BLOCK_SIZE>>>(
d_open, d_high, d_low, d_close,
d_unique_periods, d_offsets, d_counts,
num_periods, d_out_stats);
} else {
// TlpocToe snpo: ONWH IIOTOK Ha IEPUOZ,
// Jlydme pAns MHOXeCTBa IIEPHOKOB C MaJBM KOJUYECTBOM THKOB B KaxXHoM
int agg_blocks = (num_periods + BLOCK_SIZE - 1) / BLOCK_SIZE;
aggregate_periods_simple_kernel<<<agg_blocks, BLOCK_SIZE>>>(
d_open, d_high, d_low, d_close,
d_unique_periods, d_offsets, d_counts,
num_periods, d_out_stats);

CUDA_CHECK (cudaGetLastError());
CUDA_CHECK (cudaDeviceSynchronize()) ;

double step5_ms = get_time_ms() - stepb_start;

/7
// llar 6: KommpoBaHHe pe3yibTaToB Ha CPU
//
double step6_start = get_time_ms();

GpuPeriodStats* h_stats = new GpuPeriodStats[num_periods];
CUDA_CHECK (cudaMemcpy (h_stats, d_out_stats, num_periods * sizeof (GpuPeriodStats),

60

382 cudaMemcpyDeviceToHost)) ;
383

384 double step6_ms = get_time_ms() - step6_start;
385

386 /7

387 // llar 7: OcBoboxmenue GPU mamaTu
388 //

389 double step7_start = get_time_ms();
390

391 cudaFree(d_timestamps) ;

392 cudaFree(d_open) ;

393 cudaFree(d_high);

394 cudaFree(d_low);

395 cudaFree(d_close);

396 cudaFree(d_period_ids) ;

397 cudaFree(d_unique_periods) ;

398 cudaFree(d_counts) ;

399 cudaFree(d_offsets);

400 cudaFree (d_num_runs) ;

401 cudaFree(d_out_stats);

402

403 double step7_ms = get_time_ms() - step7_start;

404
405 //
406 // Wroro

407 s

408 double total_ms = get_time_ms() - total_start;

409

410 // ®opMEpyeM BecCh BHBOZ OZHOH CTpPOKOH

411 output << " GPU aggregation (" << num_ticks << " ticks, interval=" << interval << " sec, kernel=" << (
use_block_kernel ? "block" : "simple") << "):\n'";

412 output << " 1. Malloc + H->D copy: " << std::fixed << std::setprecision(3) << std::setw(7) <<
stepl_ms << " ms\n'";

413 output << " 2. Compute period_ids: " << std::setw(7) << step2_ms << " ms\n";

414 output << " 3. RLE (CUB): " << std::setw(7) << step3_ms << " ms (" << num_periods << "
periods)\n";

415 output << " 4. Exclusive scan: " << std::setw(7) << step4_ms << " ms\n";

416 output << " 5. Aggregation kernel: " << std::setw(7) << stepb_ms << " ms (" << (use_block_kernel ?
"block" : "simple") << ")\n";

417 output << " 6. D->H copy: " << std::setw(7) << stepb_ms << " ms\n";

418 output << " 7. Free GPU memory: " << std::setw(7) << step7_ms << " ms\n";

419 output << " GPU TOTAL: " << std::setw(7) << total_ms << " ms\n";

420

421 // BHBOZMM BC& OIHHMM IPHUHTOM

422 printf("/%s", output.str().c_str());

423 fflush(stdout);

424

425 *h_out_stats = h_stats;

426 *out_num_periods = num_periods;

427

428 return 0;

429y

430

431/

432 // 0csoboxnerne mamsru: pe3yIbTaToB

4337/

434

435 extern "C" void gpu_free_results(GpuPeriodStats* stats) {
436 delete[] stats;

4373y

61

OO U= W

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

// BcmoMoraTembHas CTPYKTypa Lis HAKOILIEHHWS Mmin/max B HHTepBaie

IMTPNJIO2KEHUE 3

"intervals.hpp"

"utils.hpp"
<mpi.h>
<algorithm>
<cmath>
<fstream>

<iomanip>

<sstream>

<ctime>
<limits>

struct IntervalAccumulator {
PeriodIndex start_period;

doub
doub
doub
doub
doub

le
le
le
le
le

start_avg
open_min;
open_max;
close_min
close_max

>

>

>

void init(const PeriodStats& p) {
start_period = p.period;
start_avg = p.avg;

open_min = p.open_min;

open_max = p.open_max;

close_min =

close_max =

P
P

.close_min;
.close_max;

void update(const PeriodStats& p) {

Interval finalize(const PeriodStats& end_period, double change) const {

};

// VmnakoBauHas cTpykTypa PeriodStats gma MPI mepezauu (8 doubles)

open_min = std::min(open_min, p.open_min) ;
open_max = std::max(open_max, p.open_max);

close_min =

close_max =

Interval iv;
start_period = start_period;

iv.

iv

iv.

iv

iv.
iv.

iv

iv.

std::min(close_min, p.close_min);
std: :max(close_max, p.close_max);

.end_period = end_period.period;
iv.

start_avg = start_avg;
end_avg = end_period.avg;

.change =

open_min
open_max

.close_min

close_max

return iv;

C

hange;

std: :min(open_min, end_period.open_min) ;
std::max(open_max, end_period.open_max);
= std::min(close_min, end_period.close_min);
= std::max(close_max, end_period.close_max) ;

struct PackedPeriodStats {

doub
doub
doub
doub
doub
doub
doub
doub

le
le
le
le
le
le
le
le

period;
avg;
open_min;
open_max;
close_min
close_max
count;
valid;

>

>

// PeriodIndex as double

// int64_t as double

// dmnar samupsocTm (1.0 = valid, 0.0 = invalid)

62

63 void pack(const PeriodStats& ps) {

64 period = static_cast<double>(ps.period);
65 avg = ps.avg;

66 open_min = ps.open_min;

67 open_max = pS.open_max;

68 close_min = ps.close_min;

69 close_max = ps.close_max;

70 count = static_cast<double>(ps.count);
71 valid = 1.0;

74 PeriodStats unpack() const {

75 PeriodStats ps;

76 ps.period = static_cast<PeriodIndex>(period) ;
77 ps.avg = avg;

78 ps.open_min = open_min;

79 ps.open_max = open_max;

80 ps.close_min = close_min;

8]_ ps.close_max = close_max;

82 ps.count = static_cast<int64_t>(count);

83 return ps;

86 bool is_valid() const { return valid > 0.5; }
87 void set_invalid() { valid = 0.0; }

88 };

90 IntervalResult find_intervals_parallel(

91 const std::vector<PeriodStats>& periods,
92 int rank, int size,

93 double threshold)

94 ¢

95 IntervalResult result;

96 result.compute_time = 0.0;

97 result.wait_time = 0.0;

98

99 if (periods.empty()) {

100 if (rank < size - 1) {

10]_ PackedPeriodStats invalid;

102 invalid.set_invalid();

103 MPI_Send(&invalid, 8, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD);
104 3

105 return result;

107

108 double compute_start = MPI_Wtime();

109

110 size_t process_until = (rank == size - 1) 7 periods.size() : periods.size() - 1;
111

112 IntervalAccumulator acc;

]_13 size_t start_idx = 0;

114 bool have_pending_interval = false;

115
116 if (rank > 0) {

117 double wait_start = MPI_Wtime();

118

119 PackedPeriodStats received;

120 MPI_Recv(&received, 8, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
121

122 result.wait_time = MPI_Wtime() - wait_start;

123 compute_start = MPI_Wtime();

124

125 if (received.is_valid()) {

63

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

PeriodStats prev_period = received.unpack();

for (start_idx = 0; start_idx < periods.size(); start_idx++) {
if (periods[start_idx].period > prev_period.period) {
break;
}

if (start_idx < process_until) {
acc.init(prev_period);
have_pending_interval = true;

for (size_t i = start_idx; i < process_until; i++) {
acc.update(periods[i]);

double change = std::abs(periods[i].avg - acc.start_avg) / acc.start_avg;

if (change >= threshold) {
result.intervals.push_back(acc.finalize(periods[i], change));
have_pending_interval = false;

start_idx = i + 1;

if (start_idx < process_until) {
acc.init(periods[start_idx]);
have_pending_interval = true;

}
} else {
if (process_until > 0) {
acc.init(periods[0]);
have_pending_interval = true;
start_idx = 0;

}
} else {
if (process_until > 0) {
acc.init(periods[0]);
have_pending_interval = true;
start_idx = 0;

if (rank == 0 && have_pending_interval) {
for (size_t i = 1; i < process_until; i++) {
acc.update(periods[i]);

double change = std::abs(periods[i].avg - acc.start_avg) / acc.start_avg;
if (change >= threshold) {
result.intervals.push_back(acc.finalize(periods[i], change));
have_pending_interval = false;
start_idx = i + 1;
if (start_idx < process_until) {

acc.init(periods[start_idx]);
have_pending_interval = true;

if (rank == size - 1 && have_pending_interval && !periods.empty()) {

64

190 const auto& last_period = periods.back();

191 double change = std::abs(last_period.avg - acc.start_avg) / acc.start_avg;
192 result.intervals.push_back(acc.finalize(last_period, change));
193 ¥

194

195 result.compute_time = MPI_Wtime() - compute_start;

196

197 if (rank < size - 1) {

198 PackedPeriodStats to_send;

199

200 if (have_pending_interval) {

201 PeriodStats start_period;

202 start_period.period = acc.start_period;

203 start_period.avg = acc.start_avg;

204 start_period.open_min = acc.open_min;

205 start_period.open_max = acc.open_max;

206 start_period.close_min = acc.close_min;

207 start_period.close_max = acc.close_max;

208 start_period.count = 0;

209 to_send.pack(start_period);

210 } else if (periods.size() >= 2) {

211 to_send.pack(periods[periods.size() - 2]);

212 } else {

213 to_send.set_invalid();

214 3

215

216 MPI_Send(&to_send, 8, MPI_DOUBLE, rank + 1, O, MPI_COMM_WORLD);
217 }

218

219 return result;

220 3

221

222 double collect_intervals(

223 std::vector<Interval>& local_intervals,

224 int rank, int size)

225 ¢

226 double wait_time = 0.0;

227

228 if (rank == 0) {

229 for (int r = 1; r < size; r++) {

230 double wait_start = MPI_Wtime();

231

232 int count;

233 MPI_Recv(&count, 1, MPI_INT, r, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
234

235 if (count > 0) {

236 std: :vector<double> buffer(count * 9);

237 MPI_Recv(buffer.data(), count * 9, MPI_DOUBLE, r, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
238

239 for (int i = 0; i < count; i++) {

240 Interval iv;

241 iv.start_period = static_cast<PeriodIndex>(buffer[i * 9 + 0]);
242 iv.end_period = static_cast<PeriodIndex>(buffer[i * 9 + 1]);
243 iv.open_min = buffer[i * 9 + 2];

244 iv.open_max = buffer[i * 9 + 3];

245 iv.close_min = buffer[i * 9 + 4];

246 iv.close_max = buffer[i * 9 + 5];

247 iv.start_avg = buffer[i * 9 + 6];

248 iv.end_avg = buffer[i * 9 + 7];

249 iv.change = buffer[i * 9 + 8];

250 local_intervals.push_back(iv) ;

251 }

252 ¥

253

65

254 wait_time += MPI_Wtime() - wait_start;
255 3
256

257 std::sort(local_intervals.begin(), local_intervals.end(),
258 [1(const Interval& a, const Interval& b) {
259 return a.start_period < b.start_period;

260 ¥
261 } else {

262 int count = static_cast<int>(local_intervals.size());

263 MPI_Send(&count, 1, MPI_INT, O, 1, MPI_COMM_WORLD);

264

265 if (count > 0) {

266 std: :vector<double> buffer(count * 9);

267 for (int i = 0; i < count; i++) {

268 const auto& iv = local_intervals[i];

269 buffer[i * 9 + 0] = static_cast<double>(iv.start_period) ;
270 buffer[i * 9 + 1] = static_cast<double>(iv.end_period);
271 buffer[i * 9 + 2] = iv.open_min;

272 buffer[i * 9 + 3] = iv.open_max;

273 buffer[i * 9 + 4] = iv.close_min;

274 buffer[i * 9 + 5] = iv.close_max;

275 buffer[i * 9 + 6] = iv.start_avg;

276 buffer[i * 9 + 7] = iv.end_avg;

277 buffer[i * 9 + 8] = iv.change;

278 }

279 MPI_Send(buffer.data(), count * 9, MPI_DOUBLE, O, 2, MPI_COMM_WORLD);
280 }

281 }

282

283 return wait_time;

2843

285

286 | std: :string period_index_to_datetime(PeriodIndex period) {

287 int64_t interval = get_aggregation_interval();
288 time_t ts = static_cast<time_t>(period) * interval;
289 struct tm* tm_info = gmtime(&ts);

290

29]_ std::ostringstream oss;

292 oss << std::setfill(’0?)

293 << (tm_info->tm_year + 1900) << "-"

294 << std::setw(2) << (tm_info->tm_mon + 1) << "-"
295 << std::setw(2) << tm_info->tm_mday << " "
296 << std::setw(2) << tm_info->tm_hour << ":"
297 << std::setw(2) << tm_info->tm_min << ":"

298 << std::setw(2) << tm_info->tm_sec;

299

300 return oss.str();

3013
302

303 void write_intervals(const std::string& filename, const std::vector<Interval>& intervals) {

304 std::ofstream out(filename);

305

306 out << std::fixed << std::setprecision(2);

307 out << "start_datetime,end_datetime,open_min,open_max,close_min,close_max,start_avg,end_avg,change\n";
308

309 for (const auto& iv : intervals) {

310 out << period_index_to_datetime(iv.start_period) << ","
311 << period_index_to_datetime(iv.end_period) << ","
312 << iv.open_min << ","

313 << iv.open_max << ","

314 << iv.close_min << ","

315 << iv.close_max << ", "

316 << iv.start_avg << ","

317 << iv.end_avg << ","

66

318
319
3201 }

<< std::setprecision(6) << iv.change << "\n'";

67

OO U= W

ITPNJIO2KEHUE U

#include "utils.hpp"
#include <fstream>
#include <sstream>
#include <stdexcept>
#include <numeric>

int get_num_cpu_threads() {
const char* env_threads = std::getenv("NUM_CPU_THREADS");
int num_cpu_threads = 1;
if (env_threads) {
num_cpu_threads = std::atoi(env_threads);
if (num_cpu_threads < 1) num_cpu_threads = 1;
}

return num_cpu_threads;

std::string get_env(const char* name) {
const char* env = std::getenv(name);
if (lenv) {
throw std::runtime_error(std::string("Environment variable not set: ") + name);
}

return std::string(env);

std::string get_data_path() {
return get_env("DATA_PATH");

std::vector<int> get_data_read_shares() {
std::vector<int> shares;
std: :stringstream ss(get_env("DATA_READ_SHARES"));
std::string item;
while (std::getline(ss, item, ’,’)) {
shares.push_back(std::stoi(item));
}

return shares;

int64_t get_read_overlap_bytes() {
return std::stoll(get_env("READ_OVERLAP_BYTES"));

int64_t get_aggregation_interval() {
return std::stoll(get_env("AGGREGATION_INTERVAL"));

bool get_use_cuda() {
return std::stoi(get_env("USE_CUDA")) != 0;

int64_t get_file_size(const std::string& path) {
std::ifstream file(path, std::ios::binary | std::ios::ate);
if (!'file.is_open()) {
throw std::runtime_error("Cannot open file: " + path);
¥
return static_cast<int64_t>(file.tellg());

ByteRange calculate_byte_range(int rank, int size, int64_t file_size,
const std::vector<int>& shares, int64_t overlap_bytes) {
std::vector<int> effective_shares;

68

if (shares.size() == static_cast<size_t>(size)) {
effective_shares = shares;
} else {

effective_shares.assign(size, 1);

int total_shares = std::accumulate(effective_shares.begin(), effective_shares.end(), 0);

int64_t bytes_per_share = file_size / total_shares;

int64_t base_start = 0;
for (int i = 0; i < rank; i++) {

base_start += bytes_per_share * effective_shares[i];
int64_t base_end = base_start + bytes_per_share * effective_shares[rank];
ByteRange range;
if (rank == 0) {

range.start = 0;

range.end = std::min(base_end + overlap_bytes, file_size);
} else if (rank == size - 1) {

range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));

range.end = file_size;
} else {

range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));

range.end = std::min(base_end + overlap_bytes, file_size);

return range;

94 void trim_edge_periods(std::vector<PeriodStats>& periods, int rank, int size) {

if (periods.empty()) return;

if (rank == 0) {
periods.pop_back();

} else if (rank == size - 1) {
periods.erase(periods.begin());
} else {

periods.pop_back();
periods.erase(periods.begin());

69

#pragma once
#include <cstdint>

struct PeriodStats {
PeriodIndex period;

OO U= W~

double avg;
1() double open_min;
11 double open_max;
12 double close_min;
13 double close_max;
14: int64_t count;

using PeriodIndex = int64_t;

1/
//
1/
1/
/7
/7
//

ITPNJIO2ZKEHUE K

// ArperumpoBaHHNe [aHHhE 3a OJUH IIEPHOL

uanerc mepmoga (timestamp / AGGREGATION_INTERVAL)
cpenuee 3madeHume (Low + High) / 2 mo BceM 3ammcsam
MuHEManbHbE Open 3a Iepuof

MakcuManbHb# Open 3a mepuoz

MuHEManbHHE Close 3a Iepuoz

MakcuManbHbE Close 3a mepuog,

KOJIMYeCTBO 3amuceif, II0 KOTOPHM arperupoBaju

70

1 #pragma once
2| #include <cstdint>

timestamp;
open;
high;

low;
close;
volume;

3

4| struct Record {

5 double

6 double

7 double

8 double

9 double
10 double
11/3;

ITPNJIO2ZKEHUE JI

71

	ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
	ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ
	ВВЕДЕНИЕ
	ПОСТАНОВКА ЗАДАЧИ
	ОСНОВНАЯ ЧАСТЬ РАБОТЫ
	Создание виртуального кластера
	Конфигурация пакетов
	Конфигурация сети
	Конфигурация ресурсов GPU
	Конфигурация NFS
	Конфигурация slurm
	Конфигурация munge
	Конфигурация OpenMPI
	Постановка задачи и прототип решения
	Параллельная реализация на CPU
	GPU-ускорение агрегации данных
	Конфигурация через переменные окружения
	Структура проекта

	ЗАКЛЮЧЕНИЕ
	Список литературы
	ПРИЛОЖЕНИЕ А
	ПРИЛОЖЕНИЕ Б
	ПРИЛОЖЕНИЕ В
	ПРИЛОЖЕНИЕ Г
	ПРИЛОЖЕНИЕ Д
	ПРИЛОЖЕНИЕ Е
	ПРИЛОЖЕНИЕ Ж
	ПРИЛОЖЕНИЕ З
	ПРИЛОЖЕНИЕ И
	ПРИЛОЖЕНИЕ К
	ПРИЛОЖЕНИЕ Л

