Use matplotlib for lab6 visuals and expand report

This commit is contained in:
Artem
2025-11-21 17:29:02 +03:00
parent 9f591dadda
commit 93ab829cff
3 changed files with 79 additions and 113 deletions

View File

@@ -256,16 +256,57 @@
\newpage
\section{Особенности реализации}
В рамках шестой лабораторной работы реализован простой муравьиный алгоритм для решения задачи коммивояжёра. Алгоритм оформлен в модуле \texttt{aco.py} и состоит из следующих компонентов:
\begin{itemize}
\item \textbf{Структуры данных}: конфигурация \texttt{ACOConfig} (число муравьёв, количество итераций, параметры $\alpha$, $\beta$, $\rho$ и $q$) и результат \texttt{ACOResult} (лучший тур, его длина и история улучшений).
\item \textbf{Матрицы расстояний и феромона}: расстояния между городами предвычисляются один раз; феромон хранится в виде симметричной матрицы и инициализируется единицами с нулями на диагонали.
\item \textbf{Построение тура}: каждый муравей стартует в случайном городе и последовательно добавляет вершины. Выбор следующего города происходит по вероятности, пропорциональной $\tau^\alpha \cdot (1/d)^\beta$, где $\tau$ — феромон на ребре, $d$ — расстояние между городами.
\item \textbf{Обновление феромона}: после прохода всех муравьёв выполняется испарение $\tau \leftarrow (1-\rho)\tau$ и добавление феромона $q/L$ на рёбра их маршрутов, где $L$ — длина тура.
\item \textbf{Визуализация}: для отчёта сгенерированы PNG-файлы. График маршрута рисуется посредством собственного минимального генератора PNG (без сторонних библиотек), который строит линии по методу Брезенхема и сохраняет изображение в папку \texttt{lab6/report/img}.
\end{itemize}
Код решения собран в модуле \texttt{lab6/aco.py}. Ниже приведены ключевые элементы реализации с небольшими листингами (язык Python) и пояснениями.
Для загрузки координат использован тот же код, что и в лабораторной работе №3: исходные точки читаются из \texttt{lab3/data.txt}, где в файле содержатся 38 уникальных городов.
\subsection{Структуры данных и инициализация}
Конфигурация алгоритма и структура результата оформлены через \texttt{dataclass}; в конфиге задаются параметры $\alpha$, $\beta$, $\rho$, $q$, число муравьёв и итераций, а также зерно генератора случайных чисел:
\begin{lstlisting}[language=Python]
@dataclass
class ACOConfig:
cities: Sequence[City]
n_ants: int
n_iterations: int
alpha: float = 1.0
beta: float = 5.0
rho: float = 0.5
q: float = 1.0
seed: int | None = None
\end{lstlisting}
При создании \texttt{AntColonyOptimizer} матрица расстояний вычисляется один раз, а феромон инициализируется единицами (с нулями на диагонали), чтобы не допускать самопереходов.
\subsection{Построение и оценка тура}
Каждый муравей стартует в случайном городе и расширяет маршрут, используя вероятностный выбор следующей вершины, где вес ребра определяется как $\tau^\alpha \cdot (1/d)^\beta$:
\begin{lstlisting}[language=Python]
def _choose_next_city(self, current: int, unvisited: set[int]) -> int:
candidates = list(unvisited)
weights = []
for nxt in candidates:
tau = self.pheromone[current][nxt] ** self.config.alpha
eta = (1.0 / (self.dist_matrix[current][nxt] + 1e-12)) ** self.config.beta
weights.append(tau * eta)
return random.choices(candidates, weights=weights, k=1)[0]
\end{lstlisting}
Длина тура вычисляется как сумма евклидовых расстояний между последовательными городами, включая возврат в исходную точку.
\subsection{Обновление феромона}
После завершения итерации выполняется испарение и добавление феромона $q/L$ на рёбра маршрутов всех муравьёв. Короткие маршруты оставляют более сильный след и начинают доминировать в вероятностном выборе:
\begin{lstlisting}[language=Python]
for i in range(len(self.pheromone)):
for j in range(len(self.pheromone)):
self.pheromone[i][j] *= 1 - self.config.rho
for tour, length in zip(tours, lengths):
deposit = self.config.q / length
for i in range(len(tour)):
a, b = tour[i], tour[(i + 1) % len(tour)]
self.pheromone[a][b] += deposit
self.pheromone[b][a] += deposit
\end{lstlisting}
\subsection{Загрузка данных и визуализация}
Координаты городов считываются из \texttt{lab3/data.txt}; в файле содержатся 38 уникальных точек. Для визуализации используется \texttt{matplotlib}, что позволяет сохранить исходную ориентацию системы координат (ось $Y$ направлена вверх) и избежать инверсии рисунка. Функция \texttt{plot\_tour} строит ломаную линию обхода, подсвечивает вершины и сохраняет результат в \texttt{lab6/report/img}. График сходимости \texttt{plot\_history} отображает изменение лучшей длины тура по итерациям с сеткой и подписями осей.
\newpage
\section{Результаты работы}
@@ -308,7 +349,7 @@
В ходе шестой лабораторной работы выполнена реализация простого муравьиного алгоритма для задачи коммивояжёра:
\begin{enumerate}
\item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и собственными средствами визуализации без сторонних библиотек.
\item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и визуализацией результатов с помощью \texttt{matplotlib}.
\item Проведён численный эксперимент на данных из варианта 18 (38 городов Джибути); подобраны параметры $\alpha=1{,}2$, $\beta=5$, $\rho=0{,}5$, 50 муравьёв, 400 итераций.
\item Получено приближённое решение длиной 6662{,}35, что всего на 0{,}05\% хуже известного оптимума 6659 и лучше результата, достигнутого генетическим алгоритмом из лабораторной работы №3.
\end{enumerate}