Use matplotlib for lab6 visuals and expand report
This commit is contained in:
@@ -256,16 +256,57 @@
|
||||
\newpage
|
||||
\section{Особенности реализации}
|
||||
|
||||
В рамках шестой лабораторной работы реализован простой муравьиный алгоритм для решения задачи коммивояжёра. Алгоритм оформлен в модуле \texttt{aco.py} и состоит из следующих компонентов:
|
||||
\begin{itemize}
|
||||
\item \textbf{Структуры данных}: конфигурация \texttt{ACOConfig} (число муравьёв, количество итераций, параметры $\alpha$, $\beta$, $\rho$ и $q$) и результат \texttt{ACOResult} (лучший тур, его длина и история улучшений).
|
||||
\item \textbf{Матрицы расстояний и феромона}: расстояния между городами предвычисляются один раз; феромон хранится в виде симметричной матрицы и инициализируется единицами с нулями на диагонали.
|
||||
\item \textbf{Построение тура}: каждый муравей стартует в случайном городе и последовательно добавляет вершины. Выбор следующего города происходит по вероятности, пропорциональной $\tau^\alpha \cdot (1/d)^\beta$, где $\tau$ — феромон на ребре, $d$ — расстояние между городами.
|
||||
\item \textbf{Обновление феромона}: после прохода всех муравьёв выполняется испарение $\tau \leftarrow (1-\rho)\tau$ и добавление феромона $q/L$ на рёбра их маршрутов, где $L$ — длина тура.
|
||||
\item \textbf{Визуализация}: для отчёта сгенерированы PNG-файлы. График маршрута рисуется посредством собственного минимального генератора PNG (без сторонних библиотек), который строит линии по методу Брезенхема и сохраняет изображение в папку \texttt{lab6/report/img}.
|
||||
\end{itemize}
|
||||
Код решения собран в модуле \texttt{lab6/aco.py}. Ниже приведены ключевые элементы реализации с небольшими листингами (язык Python) и пояснениями.
|
||||
|
||||
Для загрузки координат использован тот же код, что и в лабораторной работе №3: исходные точки читаются из \texttt{lab3/data.txt}, где в файле содержатся 38 уникальных городов.
|
||||
\subsection{Структуры данных и инициализация}
|
||||
Конфигурация алгоритма и структура результата оформлены через \texttt{dataclass}; в конфиге задаются параметры $\alpha$, $\beta$, $\rho$, $q$, число муравьёв и итераций, а также зерно генератора случайных чисел:
|
||||
\begin{lstlisting}[language=Python]
|
||||
@dataclass
|
||||
class ACOConfig:
|
||||
cities: Sequence[City]
|
||||
n_ants: int
|
||||
n_iterations: int
|
||||
alpha: float = 1.0
|
||||
beta: float = 5.0
|
||||
rho: float = 0.5
|
||||
q: float = 1.0
|
||||
seed: int | None = None
|
||||
\end{lstlisting}
|
||||
|
||||
При создании \texttt{AntColonyOptimizer} матрица расстояний вычисляется один раз, а феромон инициализируется единицами (с нулями на диагонали), чтобы не допускать самопереходов.
|
||||
|
||||
\subsection{Построение и оценка тура}
|
||||
Каждый муравей стартует в случайном городе и расширяет маршрут, используя вероятностный выбор следующей вершины, где вес ребра определяется как $\tau^\alpha \cdot (1/d)^\beta$:
|
||||
\begin{lstlisting}[language=Python]
|
||||
def _choose_next_city(self, current: int, unvisited: set[int]) -> int:
|
||||
candidates = list(unvisited)
|
||||
weights = []
|
||||
for nxt in candidates:
|
||||
tau = self.pheromone[current][nxt] ** self.config.alpha
|
||||
eta = (1.0 / (self.dist_matrix[current][nxt] + 1e-12)) ** self.config.beta
|
||||
weights.append(tau * eta)
|
||||
return random.choices(candidates, weights=weights, k=1)[0]
|
||||
\end{lstlisting}
|
||||
|
||||
Длина тура вычисляется как сумма евклидовых расстояний между последовательными городами, включая возврат в исходную точку.
|
||||
|
||||
\subsection{Обновление феромона}
|
||||
После завершения итерации выполняется испарение и добавление феромона $q/L$ на рёбра маршрутов всех муравьёв. Короткие маршруты оставляют более сильный след и начинают доминировать в вероятностном выборе:
|
||||
\begin{lstlisting}[language=Python]
|
||||
for i in range(len(self.pheromone)):
|
||||
for j in range(len(self.pheromone)):
|
||||
self.pheromone[i][j] *= 1 - self.config.rho
|
||||
|
||||
for tour, length in zip(tours, lengths):
|
||||
deposit = self.config.q / length
|
||||
for i in range(len(tour)):
|
||||
a, b = tour[i], tour[(i + 1) % len(tour)]
|
||||
self.pheromone[a][b] += deposit
|
||||
self.pheromone[b][a] += deposit
|
||||
\end{lstlisting}
|
||||
|
||||
\subsection{Загрузка данных и визуализация}
|
||||
Координаты городов считываются из \texttt{lab3/data.txt}; в файле содержатся 38 уникальных точек. Для визуализации используется \texttt{matplotlib}, что позволяет сохранить исходную ориентацию системы координат (ось $Y$ направлена вверх) и избежать инверсии рисунка. Функция \texttt{plot\_tour} строит ломаную линию обхода, подсвечивает вершины и сохраняет результат в \texttt{lab6/report/img}. График сходимости \texttt{plot\_history} отображает изменение лучшей длины тура по итерациям с сеткой и подписями осей.
|
||||
|
||||
\newpage
|
||||
\section{Результаты работы}
|
||||
@@ -308,7 +349,7 @@
|
||||
В ходе шестой лабораторной работы выполнена реализация простого муравьиного алгоритма для задачи коммивояжёра:
|
||||
|
||||
\begin{enumerate}
|
||||
\item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и собственными средствами визуализации без сторонних библиотек.
|
||||
\item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и визуализацией результатов с помощью \texttt{matplotlib}.
|
||||
\item Проведён численный эксперимент на данных из варианта 18 (38 городов Джибути); подобраны параметры $\alpha=1{,}2$, $\beta=5$, $\rho=0{,}5$, 50 муравьёв, 400 итераций.
|
||||
\item Получено приближённое решение длиной 6662{,}35, что всего на 0{,}05\% хуже известного оптимума 6659 и лучше результата, достигнутого генетическим алгоритмом из лабораторной работы №3.
|
||||
\end{enumerate}
|
||||
|
||||
Reference in New Issue
Block a user