Cuda
This commit is contained in:
@@ -17,5 +17,8 @@ export READ_OVERLAP_BYTES=131072
|
||||
# Интервал агрегации в секундах (60 = минуты, 600 = 10 минут, 86400 = дни)
|
||||
export AGGREGATION_INTERVAL=60
|
||||
|
||||
# Использовать ли CUDA для агрегации (0 = нет, 1 = да)
|
||||
export USE_CUDA=1
|
||||
|
||||
cd /mnt/shared/supercomputers/build
|
||||
mpirun -np $SLURM_NTASKS ./bitcoin_app
|
||||
|
||||
@@ -1,137 +1,133 @@
|
||||
#include "gpu_loader.hpp"
|
||||
#include "utils.hpp"
|
||||
#include <dlfcn.h>
|
||||
#include <map>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <omp.h>
|
||||
#include <cstdint>
|
||||
|
||||
// Структура результата GPU (должна совпадать с gpu_plugin.cu)
|
||||
struct GpuPeriodStats {
|
||||
int64_t period;
|
||||
double avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
int64_t count;
|
||||
};
|
||||
|
||||
// Типы функций из GPU плагина
|
||||
using gpu_is_available_fn = int (*)();
|
||||
|
||||
using gpu_aggregate_periods_fn = int (*)(
|
||||
const double* h_timestamps,
|
||||
const double* h_open,
|
||||
const double* h_high,
|
||||
const double* h_low,
|
||||
const double* h_close,
|
||||
int num_ticks,
|
||||
int64_t interval,
|
||||
GpuPeriodStats** h_out_stats,
|
||||
int* out_num_periods
|
||||
);
|
||||
|
||||
using gpu_free_results_fn = void (*)(GpuPeriodStats*);
|
||||
|
||||
static void* get_gpu_lib_handle() {
|
||||
static void* h = dlopen("./libgpu_compute.so", RTLD_NOW | RTLD_LOCAL);
|
||||
return h;
|
||||
}
|
||||
|
||||
gpu_is_available_fn load_gpu_is_available() {
|
||||
bool gpu_is_available() {
|
||||
void* h = get_gpu_lib_handle();
|
||||
if (!h) return nullptr;
|
||||
|
||||
auto fn = (gpu_is_available_fn)dlsym(h, "gpu_is_available");
|
||||
return fn;
|
||||
}
|
||||
|
||||
bool gpu_is_available() {
|
||||
auto gpu_is_available_fn = load_gpu_is_available();
|
||||
if (!h) return false;
|
||||
|
||||
if (gpu_is_available_fn && gpu_is_available_fn()) {
|
||||
return true;
|
||||
}
|
||||
auto fn = reinterpret_cast<gpu_is_available_fn>(dlsym(h, "gpu_is_available"));
|
||||
if (!fn) return false;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
gpu_aggregate_periods_fn load_gpu_aggregate_periods() {
|
||||
void* h = get_gpu_lib_handle();
|
||||
if (!h) return nullptr;
|
||||
|
||||
auto fn = (gpu_aggregate_periods_fn)dlsym(h, "gpu_aggregate_periods");
|
||||
return fn;
|
||||
return fn() != 0;
|
||||
}
|
||||
|
||||
bool aggregate_periods_gpu(
|
||||
const std::vector<Record>& records,
|
||||
std::vector<PeriodStats>& out_stats,
|
||||
gpu_aggregate_periods_fn gpu_fn)
|
||||
int64_t aggregation_interval,
|
||||
std::vector<PeriodStats>& out_stats)
|
||||
{
|
||||
if (!gpu_fn || records.empty()) {
|
||||
if (records.empty()) {
|
||||
out_stats.clear();
|
||||
return true;
|
||||
}
|
||||
|
||||
void* h = get_gpu_lib_handle();
|
||||
if (!h) {
|
||||
std::cerr << "GPU: Failed to load libgpu_compute.so" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
int64_t interval = get_aggregation_interval();
|
||||
|
||||
double t_total_start = omp_get_wtime();
|
||||
double t_preprocess_start = omp_get_wtime();
|
||||
|
||||
std::map<PeriodIndex, std::vector<size_t>> period_record_indices;
|
||||
|
||||
for (size_t i = 0; i < records.size(); i++) {
|
||||
PeriodIndex period = static_cast<PeriodIndex>(records[i].timestamp) / interval;
|
||||
period_record_indices[period].push_back(i);
|
||||
}
|
||||
|
||||
int num_periods = static_cast<int>(period_record_indices.size());
|
||||
auto aggregate_fn = reinterpret_cast<gpu_aggregate_periods_fn>(
|
||||
dlsym(h, "gpu_aggregate_periods"));
|
||||
auto free_fn = reinterpret_cast<gpu_free_results_fn>(
|
||||
dlsym(h, "gpu_free_results"));
|
||||
|
||||
std::vector<GpuRecord> gpu_records;
|
||||
std::vector<int> period_offsets;
|
||||
std::vector<int> period_counts;
|
||||
std::vector<long long> period_indices;
|
||||
|
||||
gpu_records.reserve(records.size());
|
||||
period_offsets.reserve(num_periods);
|
||||
period_counts.reserve(num_periods);
|
||||
period_indices.reserve(num_periods);
|
||||
|
||||
int current_offset = 0;
|
||||
|
||||
for (auto& [period, indices] : period_record_indices) {
|
||||
period_indices.push_back(period);
|
||||
period_offsets.push_back(current_offset);
|
||||
period_counts.push_back(static_cast<int>(indices.size()));
|
||||
|
||||
for (size_t idx : indices) {
|
||||
const auto& r = records[idx];
|
||||
GpuRecord gr;
|
||||
gr.timestamp = r.timestamp;
|
||||
gr.open = r.open;
|
||||
gr.high = r.high;
|
||||
gr.low = r.low;
|
||||
gr.close = r.close;
|
||||
gr.volume = r.volume;
|
||||
gpu_records.push_back(gr);
|
||||
}
|
||||
|
||||
current_offset += static_cast<int>(indices.size());
|
||||
if (!aggregate_fn || !free_fn) {
|
||||
std::cerr << "GPU: Failed to load functions from plugin" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<GpuPeriodStats> gpu_stats(num_periods);
|
||||
int num_ticks = static_cast<int>(records.size());
|
||||
|
||||
double t_preprocess_ms = (omp_get_wtime() - t_preprocess_start) * 1000.0;
|
||||
std::cout << " GPU CPU preprocessing: " << std::fixed << std::setprecision(3)
|
||||
<< std::setw(7) << t_preprocess_ms << " ms" << std::endl << std::flush;
|
||||
// Конвертируем AoS в SoA
|
||||
std::vector<double> timestamps(num_ticks);
|
||||
std::vector<double> open(num_ticks);
|
||||
std::vector<double> high(num_ticks);
|
||||
std::vector<double> low(num_ticks);
|
||||
std::vector<double> close(num_ticks);
|
||||
|
||||
int result = gpu_fn(
|
||||
gpu_records.data(),
|
||||
static_cast<int>(gpu_records.size()),
|
||||
period_offsets.data(),
|
||||
period_counts.data(),
|
||||
period_indices.data(),
|
||||
num_periods,
|
||||
gpu_stats.data()
|
||||
for (int i = 0; i < num_ticks; i++) {
|
||||
timestamps[i] = records[i].timestamp;
|
||||
open[i] = records[i].open;
|
||||
high[i] = records[i].high;
|
||||
low[i] = records[i].low;
|
||||
close[i] = records[i].close;
|
||||
}
|
||||
|
||||
// Вызываем GPU функцию
|
||||
GpuPeriodStats* gpu_stats = nullptr;
|
||||
int num_periods = 0;
|
||||
|
||||
int result = aggregate_fn(
|
||||
timestamps.data(),
|
||||
open.data(),
|
||||
high.data(),
|
||||
low.data(),
|
||||
close.data(),
|
||||
num_ticks,
|
||||
aggregation_interval,
|
||||
&gpu_stats,
|
||||
&num_periods
|
||||
);
|
||||
|
||||
if (result != 0) {
|
||||
std::cout << " GPU: Function returned error code " << result << std::endl;
|
||||
std::cerr << "GPU: Aggregation failed with code " << result << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Конвертируем результат в PeriodStats
|
||||
out_stats.clear();
|
||||
out_stats.reserve(num_periods);
|
||||
|
||||
for (const auto& gs : gpu_stats) {
|
||||
for (int i = 0; i < num_periods; i++) {
|
||||
PeriodStats ps;
|
||||
ps.period = gs.period;
|
||||
ps.avg = gs.avg;
|
||||
ps.open_min = gs.open_min;
|
||||
ps.open_max = gs.open_max;
|
||||
ps.close_min = gs.close_min;
|
||||
ps.close_max = gs.close_max;
|
||||
ps.count = gs.count;
|
||||
ps.period = gpu_stats[i].period;
|
||||
ps.avg = gpu_stats[i].avg;
|
||||
ps.open_min = gpu_stats[i].open_min;
|
||||
ps.open_max = gpu_stats[i].open_max;
|
||||
ps.close_min = gpu_stats[i].close_min;
|
||||
ps.close_max = gpu_stats[i].close_max;
|
||||
ps.count = gpu_stats[i].count;
|
||||
out_stats.push_back(ps);
|
||||
}
|
||||
|
||||
double t_total_ms = (omp_get_wtime() - t_total_start) * 1000.0;
|
||||
std::cout << " GPU TOTAL (with prep): " << std::fixed << std::setprecision(3)
|
||||
<< std::setw(7) << t_total_ms << " ms" << std::endl << std::flush;
|
||||
// Освобождаем память
|
||||
free_fn(gpu_stats);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -3,48 +3,13 @@
|
||||
#include "record.hpp"
|
||||
#include <vector>
|
||||
|
||||
// Проверка доступности CUDA
|
||||
bool gpu_is_available();
|
||||
|
||||
// Типы функций из GPU плагина
|
||||
using gpu_is_available_fn = int (*)();
|
||||
|
||||
// Структуры для GPU (должны совпадать с gpu_plugin.cu)
|
||||
struct GpuRecord {
|
||||
double timestamp;
|
||||
double open;
|
||||
double high;
|
||||
double low;
|
||||
double close;
|
||||
double volume;
|
||||
};
|
||||
|
||||
struct GpuPeriodStats {
|
||||
long long period;
|
||||
double avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
long long count;
|
||||
};
|
||||
|
||||
using gpu_aggregate_periods_fn = int (*)(
|
||||
const GpuRecord* h_records,
|
||||
int num_records,
|
||||
const int* h_period_offsets,
|
||||
const int* h_period_counts,
|
||||
const long long* h_period_indices,
|
||||
int num_periods,
|
||||
GpuPeriodStats* h_out_stats
|
||||
);
|
||||
|
||||
// Загрузка функций из плагина
|
||||
gpu_is_available_fn load_gpu_is_available();
|
||||
gpu_aggregate_periods_fn load_gpu_aggregate_periods();
|
||||
|
||||
// Обёртка для агрегации на GPU (возвращает true если успешно)
|
||||
// Агрегация периодов на GPU
|
||||
// Возвращает true если успешно, false если GPU недоступен или ошибка
|
||||
bool aggregate_periods_gpu(
|
||||
const std::vector<Record>& records,
|
||||
std::vector<PeriodStats>& out_stats,
|
||||
gpu_aggregate_periods_fn gpu_fn
|
||||
int64_t aggregation_interval,
|
||||
std::vector<PeriodStats>& out_stats
|
||||
);
|
||||
|
||||
@@ -1,262 +1,430 @@
|
||||
#include <cuda_runtime.h>
|
||||
#include <cub/cub.cuh>
|
||||
#include <cstdint>
|
||||
#include <cfloat>
|
||||
#include <cstdio>
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <iomanip>
|
||||
|
||||
// ============================================================================
|
||||
// Структуры данных
|
||||
// ============================================================================
|
||||
|
||||
// SoA (Structure of Arrays) для входных данных на GPU
|
||||
struct GpuTicksSoA {
|
||||
double* timestamp;
|
||||
double* open;
|
||||
double* high;
|
||||
double* low;
|
||||
double* close;
|
||||
int n;
|
||||
};
|
||||
|
||||
// Результат агрегации одного периода
|
||||
struct GpuPeriodStats {
|
||||
int64_t period;
|
||||
double avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
int64_t count;
|
||||
};
|
||||
|
||||
// ============================================================================
|
||||
// Вспомогательные функции
|
||||
// ============================================================================
|
||||
|
||||
// CPU таймер в миллисекундах
|
||||
static double get_time_ms() {
|
||||
struct timespec ts;
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||
return ts.tv_sec * 1000.0 + ts.tv_nsec / 1000000.0;
|
||||
}
|
||||
|
||||
// Структуры данных (должны совпадать с C++ кодом)
|
||||
struct GpuRecord {
|
||||
double timestamp;
|
||||
double open;
|
||||
double high;
|
||||
double low;
|
||||
double close;
|
||||
double volume;
|
||||
};
|
||||
#define CUDA_CHECK(call) do { \
|
||||
cudaError_t err = call; \
|
||||
if (err != cudaSuccess) { \
|
||||
printf("CUDA error at %s:%d: %s\n", __FILE__, __LINE__, cudaGetErrorString(err)); \
|
||||
return -1; \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
struct GpuDayStats {
|
||||
long long day;
|
||||
double avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
long long count;
|
||||
};
|
||||
// ============================================================================
|
||||
// Kernel: вычисление period_id для каждого тика
|
||||
// ============================================================================
|
||||
|
||||
__global__ void compute_period_ids_kernel(
|
||||
const double* __restrict__ timestamps,
|
||||
int64_t* __restrict__ period_ids,
|
||||
int n,
|
||||
int64_t interval)
|
||||
{
|
||||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (idx < n) {
|
||||
period_ids[idx] = static_cast<int64_t>(timestamps[idx]) / interval;
|
||||
}
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Kernel: агрегация одного периода (один блок на период)
|
||||
// ============================================================================
|
||||
|
||||
__global__ void aggregate_periods_kernel(
|
||||
const double* __restrict__ open,
|
||||
const double* __restrict__ high,
|
||||
const double* __restrict__ low,
|
||||
const double* __restrict__ close,
|
||||
const int64_t* __restrict__ unique_periods,
|
||||
const int* __restrict__ offsets,
|
||||
const int* __restrict__ counts,
|
||||
int num_periods,
|
||||
GpuPeriodStats* __restrict__ out_stats)
|
||||
{
|
||||
int period_idx = blockIdx.x;
|
||||
if (period_idx >= num_periods) return;
|
||||
|
||||
int offset = offsets[period_idx];
|
||||
int count = counts[period_idx];
|
||||
|
||||
// Используем shared memory для редукции внутри блока
|
||||
__shared__ double s_avg_sum;
|
||||
__shared__ double s_open_min;
|
||||
__shared__ double s_open_max;
|
||||
__shared__ double s_close_min;
|
||||
__shared__ double s_close_max;
|
||||
|
||||
// Инициализация shared memory первым потоком
|
||||
if (threadIdx.x == 0) {
|
||||
s_avg_sum = 0.0;
|
||||
s_open_min = DBL_MAX;
|
||||
s_open_max = -DBL_MAX;
|
||||
s_close_min = DBL_MAX;
|
||||
s_close_max = -DBL_MAX;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Локальные аккумуляторы для каждого потока
|
||||
double local_avg_sum = 0.0;
|
||||
double local_open_min = DBL_MAX;
|
||||
double local_open_max = -DBL_MAX;
|
||||
double local_close_min = DBL_MAX;
|
||||
double local_close_max = -DBL_MAX;
|
||||
|
||||
// Каждый поток обрабатывает свою часть тиков
|
||||
for (int i = threadIdx.x; i < count; i += blockDim.x) {
|
||||
int tick_idx = offset + i;
|
||||
double avg = (low[tick_idx] + high[tick_idx]) / 2.0;
|
||||
local_avg_sum += avg;
|
||||
local_open_min = min(local_open_min, open[tick_idx]);
|
||||
local_open_max = max(local_open_max, open[tick_idx]);
|
||||
local_close_min = min(local_close_min, close[tick_idx]);
|
||||
local_close_max = max(local_close_max, close[tick_idx]);
|
||||
}
|
||||
|
||||
// Редукция с использованием атомарных операций
|
||||
atomicAdd(&s_avg_sum, local_avg_sum);
|
||||
atomicMin(reinterpret_cast<unsigned long long*>(&s_open_min),
|
||||
__double_as_longlong(local_open_min));
|
||||
atomicMax(reinterpret_cast<unsigned long long*>(&s_open_max),
|
||||
__double_as_longlong(local_open_max));
|
||||
atomicMin(reinterpret_cast<unsigned long long*>(&s_close_min),
|
||||
__double_as_longlong(local_close_min));
|
||||
atomicMax(reinterpret_cast<unsigned long long*>(&s_close_max),
|
||||
__double_as_longlong(local_close_max));
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Первый поток записывает результат
|
||||
if (threadIdx.x == 0) {
|
||||
GpuPeriodStats stats;
|
||||
stats.period = unique_periods[period_idx];
|
||||
stats.avg = s_avg_sum / static_cast<double>(count);
|
||||
stats.open_min = s_open_min;
|
||||
stats.open_max = s_open_max;
|
||||
stats.close_min = s_close_min;
|
||||
stats.close_max = s_close_max;
|
||||
stats.count = count;
|
||||
out_stats[period_idx] = stats;
|
||||
}
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Простой kernel для агрегации (один поток на период)
|
||||
// Используется когда периодов много и тиков в каждом мало
|
||||
// ============================================================================
|
||||
|
||||
__global__ void aggregate_periods_simple_kernel(
|
||||
const double* __restrict__ open,
|
||||
const double* __restrict__ high,
|
||||
const double* __restrict__ low,
|
||||
const double* __restrict__ close,
|
||||
const int64_t* __restrict__ unique_periods,
|
||||
const int* __restrict__ offsets,
|
||||
const int* __restrict__ counts,
|
||||
int num_periods,
|
||||
GpuPeriodStats* __restrict__ out_stats)
|
||||
{
|
||||
int period_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (period_idx >= num_periods) return;
|
||||
|
||||
int offset = offsets[period_idx];
|
||||
int count = counts[period_idx];
|
||||
|
||||
double avg_sum = 0.0;
|
||||
double open_min = DBL_MAX;
|
||||
double open_max = -DBL_MAX;
|
||||
double close_min = DBL_MAX;
|
||||
double close_max = -DBL_MAX;
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
int tick_idx = offset + i;
|
||||
double avg = (low[tick_idx] + high[tick_idx]) / 2.0;
|
||||
avg_sum += avg;
|
||||
open_min = min(open_min, open[tick_idx]);
|
||||
open_max = max(open_max, open[tick_idx]);
|
||||
close_min = min(close_min, close[tick_idx]);
|
||||
close_max = max(close_max, close[tick_idx]);
|
||||
}
|
||||
|
||||
GpuPeriodStats stats;
|
||||
stats.period = unique_periods[period_idx];
|
||||
stats.avg = avg_sum / static_cast<double>(count);
|
||||
stats.open_min = open_min;
|
||||
stats.open_max = open_max;
|
||||
stats.close_min = close_min;
|
||||
stats.close_max = close_max;
|
||||
stats.count = count;
|
||||
out_stats[period_idx] = stats;
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Проверка доступности GPU
|
||||
// ============================================================================
|
||||
|
||||
extern "C" int gpu_is_available() {
|
||||
int n = 0;
|
||||
cudaError_t err = cudaGetDeviceCount(&n);
|
||||
if (err != cudaSuccess) return 0;
|
||||
if (n > 0) {
|
||||
// Инициализируем CUDA контекст заранее (cudaFree(0) форсирует инициализацию)
|
||||
cudaFree(0);
|
||||
cudaFree(0); // Форсируем инициализацию контекста
|
||||
}
|
||||
return (n > 0) ? 1 : 0;
|
||||
}
|
||||
|
||||
// Kernel для агрегации (каждый поток обрабатывает один день)
|
||||
__global__ void aggregate_kernel(
|
||||
const GpuRecord* records,
|
||||
int num_records,
|
||||
const int* day_offsets, // начало каждого дня в массиве records
|
||||
const int* day_counts, // количество записей в каждом дне
|
||||
const long long* day_indices, // индексы дней
|
||||
int num_days,
|
||||
GpuDayStats* out_stats)
|
||||
{
|
||||
// Глобальный индекс потока = индекс дня
|
||||
int d = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (d >= num_days) return;
|
||||
|
||||
int offset = day_offsets[d];
|
||||
int count = day_counts[d];
|
||||
|
||||
GpuDayStats stats;
|
||||
stats.day = day_indices[d];
|
||||
stats.open_min = DBL_MAX;
|
||||
stats.open_max = -DBL_MAX;
|
||||
stats.close_min = DBL_MAX;
|
||||
stats.close_max = -DBL_MAX;
|
||||
stats.count = count;
|
||||
|
||||
double avg_sum = 0.0;
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
const GpuRecord& r = records[offset + i];
|
||||
|
||||
// Accumulate avg = (low + high) / 2
|
||||
avg_sum += (r.low + r.high) / 2.0;
|
||||
|
||||
// min/max Open
|
||||
if (r.open < stats.open_min) stats.open_min = r.open;
|
||||
if (r.open > stats.open_max) stats.open_max = r.open;
|
||||
|
||||
// min/max Close
|
||||
if (r.close < stats.close_min) stats.close_min = r.close;
|
||||
if (r.close > stats.close_max) stats.close_max = r.close;
|
||||
}
|
||||
|
||||
stats.avg = avg_sum / static_cast<double>(count);
|
||||
out_stats[d] = stats;
|
||||
}
|
||||
// ============================================================================
|
||||
// Главная функция агрегации на GPU
|
||||
// ============================================================================
|
||||
|
||||
// Функция агрегации, вызываемая из C++
|
||||
extern "C" int gpu_aggregate_days(
|
||||
const GpuRecord* h_records,
|
||||
int num_records,
|
||||
const int* h_day_offsets,
|
||||
const int* h_day_counts,
|
||||
const long long* h_day_indices,
|
||||
int num_days,
|
||||
GpuDayStats* h_out_stats)
|
||||
extern "C" int gpu_aggregate_periods(
|
||||
const double* h_timestamps,
|
||||
const double* h_open,
|
||||
const double* h_high,
|
||||
const double* h_low,
|
||||
const double* h_close,
|
||||
int num_ticks,
|
||||
int64_t interval,
|
||||
GpuPeriodStats** h_out_stats,
|
||||
int* out_num_periods)
|
||||
{
|
||||
double cpu_total_start = get_time_ms();
|
||||
|
||||
// === Создаём CUDA события для измерения времени ===
|
||||
double cpu_event_create_start = get_time_ms();
|
||||
|
||||
cudaEvent_t start_malloc, stop_malloc;
|
||||
cudaEvent_t start_transfer, stop_transfer;
|
||||
cudaEvent_t start_kernel, stop_kernel;
|
||||
cudaEvent_t start_copy_back, stop_copy_back;
|
||||
cudaEvent_t start_free, stop_free;
|
||||
|
||||
cudaEventCreate(&start_malloc);
|
||||
cudaEventCreate(&stop_malloc);
|
||||
cudaEventCreate(&start_transfer);
|
||||
cudaEventCreate(&stop_transfer);
|
||||
cudaEventCreate(&start_kernel);
|
||||
cudaEventCreate(&stop_kernel);
|
||||
cudaEventCreate(&start_copy_back);
|
||||
cudaEventCreate(&stop_copy_back);
|
||||
cudaEventCreate(&start_free);
|
||||
cudaEventCreate(&stop_free);
|
||||
|
||||
double cpu_event_create_ms = get_time_ms() - cpu_event_create_start;
|
||||
|
||||
// === ИЗМЕРЕНИЕ cudaMalloc ===
|
||||
cudaEventRecord(start_malloc);
|
||||
|
||||
GpuRecord* d_records = nullptr;
|
||||
int* d_day_offsets = nullptr;
|
||||
int* d_day_counts = nullptr;
|
||||
long long* d_day_indices = nullptr;
|
||||
GpuDayStats* d_out_stats = nullptr;
|
||||
|
||||
cudaError_t err;
|
||||
|
||||
err = cudaMalloc(&d_records, num_records * sizeof(GpuRecord));
|
||||
if (err != cudaSuccess) return -1;
|
||||
|
||||
err = cudaMalloc(&d_day_offsets, num_days * sizeof(int));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); return -2; }
|
||||
|
||||
err = cudaMalloc(&d_day_counts, num_days * sizeof(int));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); return -3; }
|
||||
|
||||
err = cudaMalloc(&d_day_indices, num_days * sizeof(long long));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); cudaFree(d_day_counts); return -4; }
|
||||
|
||||
err = cudaMalloc(&d_out_stats, num_days * sizeof(GpuDayStats));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); cudaFree(d_day_counts); cudaFree(d_day_indices); return -5; }
|
||||
|
||||
cudaEventRecord(stop_malloc);
|
||||
cudaEventSynchronize(stop_malloc);
|
||||
|
||||
float time_malloc_ms = 0;
|
||||
cudaEventElapsedTime(&time_malloc_ms, start_malloc, stop_malloc);
|
||||
|
||||
// === ИЗМЕРЕНИЕ memcpy H->D ===
|
||||
cudaEventRecord(start_transfer);
|
||||
|
||||
err = cudaMemcpy(d_records, h_records, num_records * sizeof(GpuRecord), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -10;
|
||||
|
||||
err = cudaMemcpy(d_day_offsets, h_day_offsets, num_days * sizeof(int), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -11;
|
||||
|
||||
err = cudaMemcpy(d_day_counts, h_day_counts, num_days * sizeof(int), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -12;
|
||||
|
||||
err = cudaMemcpy(d_day_indices, h_day_indices, num_days * sizeof(long long), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -13;
|
||||
|
||||
cudaEventRecord(stop_transfer);
|
||||
cudaEventSynchronize(stop_transfer);
|
||||
|
||||
float time_transfer_ms = 0;
|
||||
cudaEventElapsedTime(&time_transfer_ms, start_transfer, stop_transfer);
|
||||
|
||||
// === ИЗМЕРЕНИЕ kernel ===
|
||||
const int THREADS_PER_BLOCK = 256;
|
||||
int num_blocks = (num_days + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
|
||||
|
||||
cudaEventRecord(start_kernel);
|
||||
|
||||
aggregate_kernel<<<num_blocks, THREADS_PER_BLOCK>>>(
|
||||
d_records, num_records,
|
||||
d_day_offsets, d_day_counts, d_day_indices,
|
||||
num_days, d_out_stats
|
||||
);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess) {
|
||||
cudaFree(d_records);
|
||||
cudaFree(d_day_offsets);
|
||||
cudaFree(d_day_counts);
|
||||
cudaFree(d_day_indices);
|
||||
cudaFree(d_out_stats);
|
||||
return -7;
|
||||
if (num_ticks == 0) {
|
||||
*h_out_stats = nullptr;
|
||||
*out_num_periods = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
cudaEventRecord(stop_kernel);
|
||||
cudaEventSynchronize(stop_kernel);
|
||||
std::ostringstream output;
|
||||
double total_start = get_time_ms();
|
||||
|
||||
float time_kernel_ms = 0;
|
||||
cudaEventElapsedTime(&time_kernel_ms, start_kernel, stop_kernel);
|
||||
// ========================================================================
|
||||
// Шаг 1: Выделение памяти и копирование данных на GPU
|
||||
// ========================================================================
|
||||
double step1_start = get_time_ms();
|
||||
|
||||
// === ИЗМЕРЕНИЕ memcpy D->H ===
|
||||
cudaEventRecord(start_copy_back);
|
||||
cudaMemcpy(h_out_stats, d_out_stats, num_days * sizeof(GpuDayStats), cudaMemcpyDeviceToHost);
|
||||
cudaEventRecord(stop_copy_back);
|
||||
cudaEventSynchronize(stop_copy_back);
|
||||
double* d_timestamps = nullptr;
|
||||
double* d_open = nullptr;
|
||||
double* d_high = nullptr;
|
||||
double* d_low = nullptr;
|
||||
double* d_close = nullptr;
|
||||
int64_t* d_period_ids = nullptr;
|
||||
|
||||
float time_copy_back_ms = 0;
|
||||
cudaEventElapsedTime(&time_copy_back_ms, start_copy_back, stop_copy_back);
|
||||
size_t ticks_bytes = num_ticks * sizeof(double);
|
||||
|
||||
// === ИЗМЕРЕНИЕ cudaFree ===
|
||||
cudaEventRecord(start_free);
|
||||
CUDA_CHECK(cudaMalloc(&d_timestamps, ticks_bytes));
|
||||
CUDA_CHECK(cudaMalloc(&d_open, ticks_bytes));
|
||||
CUDA_CHECK(cudaMalloc(&d_high, ticks_bytes));
|
||||
CUDA_CHECK(cudaMalloc(&d_low, ticks_bytes));
|
||||
CUDA_CHECK(cudaMalloc(&d_close, ticks_bytes));
|
||||
CUDA_CHECK(cudaMalloc(&d_period_ids, num_ticks * sizeof(int64_t)));
|
||||
|
||||
cudaFree(d_records);
|
||||
cudaFree(d_day_offsets);
|
||||
cudaFree(d_day_counts);
|
||||
cudaFree(d_day_indices);
|
||||
CUDA_CHECK(cudaMemcpy(d_timestamps, h_timestamps, ticks_bytes, cudaMemcpyHostToDevice));
|
||||
CUDA_CHECK(cudaMemcpy(d_open, h_open, ticks_bytes, cudaMemcpyHostToDevice));
|
||||
CUDA_CHECK(cudaMemcpy(d_high, h_high, ticks_bytes, cudaMemcpyHostToDevice));
|
||||
CUDA_CHECK(cudaMemcpy(d_low, h_low, ticks_bytes, cudaMemcpyHostToDevice));
|
||||
CUDA_CHECK(cudaMemcpy(d_close, h_close, ticks_bytes, cudaMemcpyHostToDevice));
|
||||
|
||||
double step1_ms = get_time_ms() - step1_start;
|
||||
|
||||
// ========================================================================
|
||||
// Шаг 2: Вычисление period_id для каждого тика
|
||||
// ========================================================================
|
||||
double step2_start = get_time_ms();
|
||||
|
||||
const int BLOCK_SIZE = 256;
|
||||
int num_blocks = (num_ticks + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
compute_period_ids_kernel<<<num_blocks, BLOCK_SIZE>>>(
|
||||
d_timestamps, d_period_ids, num_ticks, interval);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
double step2_ms = get_time_ms() - step2_start;
|
||||
|
||||
// ========================================================================
|
||||
// Шаг 3: RLE (Run-Length Encode) для нахождения уникальных периодов
|
||||
// ========================================================================
|
||||
double step3_start = get_time_ms();
|
||||
|
||||
int64_t* d_unique_periods = nullptr;
|
||||
int* d_counts = nullptr;
|
||||
int* d_num_runs = nullptr;
|
||||
|
||||
CUDA_CHECK(cudaMalloc(&d_unique_periods, num_ticks * sizeof(int64_t)));
|
||||
CUDA_CHECK(cudaMalloc(&d_counts, num_ticks * sizeof(int)));
|
||||
CUDA_CHECK(cudaMalloc(&d_num_runs, sizeof(int)));
|
||||
|
||||
// Определяем размер временного буфера для CUB
|
||||
void* d_temp_storage = nullptr;
|
||||
size_t temp_storage_bytes = 0;
|
||||
|
||||
cub::DeviceRunLengthEncode::Encode(
|
||||
d_temp_storage, temp_storage_bytes,
|
||||
d_period_ids, d_unique_periods, d_counts, d_num_runs,
|
||||
num_ticks);
|
||||
|
||||
CUDA_CHECK(cudaMalloc(&d_temp_storage, temp_storage_bytes));
|
||||
|
||||
cub::DeviceRunLengthEncode::Encode(
|
||||
d_temp_storage, temp_storage_bytes,
|
||||
d_period_ids, d_unique_periods, d_counts, d_num_runs,
|
||||
num_ticks);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Копируем количество уникальных периодов
|
||||
int num_periods = 0;
|
||||
CUDA_CHECK(cudaMemcpy(&num_periods, d_num_runs, sizeof(int), cudaMemcpyDeviceToHost));
|
||||
|
||||
cudaFree(d_temp_storage);
|
||||
d_temp_storage = nullptr;
|
||||
|
||||
double step3_ms = get_time_ms() - step3_start;
|
||||
|
||||
// ========================================================================
|
||||
// Шаг 4: Exclusive Scan для вычисления offsets
|
||||
// ========================================================================
|
||||
double step4_start = get_time_ms();
|
||||
|
||||
int* d_offsets = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(&d_offsets, num_periods * sizeof(int)));
|
||||
|
||||
temp_storage_bytes = 0;
|
||||
cub::DeviceScan::ExclusiveSum(
|
||||
d_temp_storage, temp_storage_bytes,
|
||||
d_counts, d_offsets, num_periods);
|
||||
|
||||
CUDA_CHECK(cudaMalloc(&d_temp_storage, temp_storage_bytes));
|
||||
|
||||
cub::DeviceScan::ExclusiveSum(
|
||||
d_temp_storage, temp_storage_bytes,
|
||||
d_counts, d_offsets, num_periods);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
cudaFree(d_temp_storage);
|
||||
|
||||
double step4_ms = get_time_ms() - step4_start;
|
||||
|
||||
// ========================================================================
|
||||
// Шаг 5: Агрегация периодов
|
||||
// ========================================================================
|
||||
double step5_start = get_time_ms();
|
||||
|
||||
GpuPeriodStats* d_out_stats = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(&d_out_stats, num_periods * sizeof(GpuPeriodStats)));
|
||||
|
||||
// Используем простой kernel (один поток на период)
|
||||
// т.к. обычно тиков в периоде немного
|
||||
int agg_blocks = (num_periods + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
aggregate_periods_simple_kernel<<<agg_blocks, BLOCK_SIZE>>>(
|
||||
d_open, d_high, d_low, d_close,
|
||||
d_unique_periods, d_offsets, d_counts,
|
||||
num_periods, d_out_stats);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
double step5_ms = get_time_ms() - step5_start;
|
||||
|
||||
// ========================================================================
|
||||
// Шаг 6: Копирование результатов на CPU
|
||||
// ========================================================================
|
||||
double step6_start = get_time_ms();
|
||||
|
||||
GpuPeriodStats* h_stats = new GpuPeriodStats[num_periods];
|
||||
CUDA_CHECK(cudaMemcpy(h_stats, d_out_stats, num_periods * sizeof(GpuPeriodStats),
|
||||
cudaMemcpyDeviceToHost));
|
||||
|
||||
double step6_ms = get_time_ms() - step6_start;
|
||||
|
||||
// ========================================================================
|
||||
// Шаг 7: Освобождение GPU памяти
|
||||
// ========================================================================
|
||||
double step7_start = get_time_ms();
|
||||
|
||||
cudaFree(d_timestamps);
|
||||
cudaFree(d_open);
|
||||
cudaFree(d_high);
|
||||
cudaFree(d_low);
|
||||
cudaFree(d_close);
|
||||
cudaFree(d_period_ids);
|
||||
cudaFree(d_unique_periods);
|
||||
cudaFree(d_counts);
|
||||
cudaFree(d_offsets);
|
||||
cudaFree(d_num_runs);
|
||||
cudaFree(d_out_stats);
|
||||
|
||||
cudaEventRecord(stop_free);
|
||||
cudaEventSynchronize(stop_free);
|
||||
double step7_ms = get_time_ms() - step7_start;
|
||||
|
||||
float time_free_ms = 0;
|
||||
cudaEventElapsedTime(&time_free_ms, start_free, stop_free);
|
||||
// ========================================================================
|
||||
// Итого
|
||||
// ========================================================================
|
||||
double total_ms = get_time_ms() - total_start;
|
||||
|
||||
// Общее время GPU
|
||||
float time_total_ms = time_malloc_ms + time_transfer_ms + time_kernel_ms + time_copy_back_ms + time_free_ms;
|
||||
// Формируем весь вывод одной строкой
|
||||
output << " GPU aggregation (" << num_ticks << " ticks, interval=" << interval << " sec):\n";
|
||||
output << " 1. Malloc + H->D copy: " << std::fixed << std::setprecision(3) << std::setw(7) << step1_ms << " ms\n";
|
||||
output << " 2. Compute period_ids: " << std::setw(7) << step2_ms << " ms\n";
|
||||
output << " 3. RLE (CUB): " << std::setw(7) << step3_ms << " ms (" << num_periods << " periods)\n";
|
||||
output << " 4. Exclusive scan: " << std::setw(7) << step4_ms << " ms\n";
|
||||
output << " 5. Aggregation kernel: " << std::setw(7) << step5_ms << " ms\n";
|
||||
output << " 6. D->H copy: " << std::setw(7) << step6_ms << " ms\n";
|
||||
output << " 7. Free GPU memory: " << std::setw(7) << step7_ms << " ms\n";
|
||||
output << " GPU TOTAL: " << std::setw(7) << total_ms << " ms\n";
|
||||
|
||||
// === Освобождаем события ===
|
||||
double cpu_event_destroy_start = get_time_ms();
|
||||
|
||||
cudaEventDestroy(start_malloc);
|
||||
cudaEventDestroy(stop_malloc);
|
||||
cudaEventDestroy(start_transfer);
|
||||
cudaEventDestroy(stop_transfer);
|
||||
cudaEventDestroy(start_kernel);
|
||||
cudaEventDestroy(stop_kernel);
|
||||
cudaEventDestroy(start_copy_back);
|
||||
cudaEventDestroy(stop_copy_back);
|
||||
cudaEventDestroy(start_free);
|
||||
cudaEventDestroy(stop_free);
|
||||
|
||||
double cpu_event_destroy_ms = get_time_ms() - cpu_event_destroy_start;
|
||||
double cpu_total_ms = get_time_ms() - cpu_total_start;
|
||||
|
||||
// Выводим детальную статистику
|
||||
printf(" GPU Timings (%d records, %d days):\n", num_records, num_days);
|
||||
printf(" cudaMalloc: %7.3f ms\n", time_malloc_ms);
|
||||
printf(" memcpy H->D: %7.3f ms\n", time_transfer_ms);
|
||||
printf(" kernel execution: %7.3f ms\n", time_kernel_ms);
|
||||
printf(" memcpy D->H: %7.3f ms\n", time_copy_back_ms);
|
||||
printf(" cudaFree: %7.3f ms\n", time_free_ms);
|
||||
printf(" GPU TOTAL: %7.3f ms\n", cpu_total_ms);
|
||||
// Выводим всё одним принтом
|
||||
printf("%s", output.str().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
*h_out_stats = h_stats;
|
||||
*out_num_periods = num_periods;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Освобождение памяти результатов
|
||||
// ============================================================================
|
||||
|
||||
extern "C" void gpu_free_results(GpuPeriodStats* stats) {
|
||||
delete[] stats;
|
||||
}
|
||||
|
||||
25
src/main.cpp
25
src/main.cpp
@@ -9,6 +9,7 @@
|
||||
#include "aggregation.hpp"
|
||||
#include "intervals.hpp"
|
||||
#include "utils.hpp"
|
||||
#include "gpu_loader.hpp"
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
MPI_Init(&argc, &argv);
|
||||
@@ -18,6 +19,17 @@ int main(int argc, char** argv) {
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &size);
|
||||
|
||||
// Проверяем доступность GPU
|
||||
bool use_cuda = get_use_cuda();
|
||||
bool have_gpu = gpu_is_available();
|
||||
bool use_gpu = use_cuda && have_gpu;
|
||||
|
||||
std::cout << "Rank " << rank
|
||||
<< ": USE_CUDA=" << use_cuda
|
||||
<< ", GPU available=" << have_gpu
|
||||
<< ", using " << (use_gpu ? "GPU" : "CPU")
|
||||
<< std::endl;
|
||||
|
||||
// Параллельное чтение данных
|
||||
double read_start = MPI_Wtime();
|
||||
std::vector<Record> records = load_csv_parallel(rank, size);
|
||||
@@ -30,7 +42,18 @@ int main(int argc, char** argv) {
|
||||
|
||||
// Агрегация по периодам
|
||||
double agg_start = MPI_Wtime();
|
||||
std::vector<PeriodStats> periods = aggregate_periods(records);
|
||||
std::vector<PeriodStats> periods;
|
||||
|
||||
if (use_gpu) {
|
||||
int64_t interval = get_aggregation_interval();
|
||||
if (!aggregate_periods_gpu(records, interval, periods)) {
|
||||
std::cerr << "Rank " << rank << ": GPU aggregation failed, falling back to CPU" << std::endl;
|
||||
periods = aggregate_periods(records);
|
||||
}
|
||||
} else {
|
||||
periods = aggregate_periods(records);
|
||||
}
|
||||
|
||||
double agg_time = MPI_Wtime() - agg_start;
|
||||
|
||||
std::cout << "Rank " << rank
|
||||
|
||||
@@ -44,6 +44,10 @@ int64_t get_aggregation_interval() {
|
||||
return std::stoll(get_env("AGGREGATION_INTERVAL"));
|
||||
}
|
||||
|
||||
bool get_use_cuda() {
|
||||
return std::stoi(get_env("USE_CUDA")) != 0;
|
||||
}
|
||||
|
||||
int64_t get_file_size(const std::string& path) {
|
||||
std::ifstream file(path, std::ios::binary | std::ios::ate);
|
||||
if (!file.is_open()) {
|
||||
|
||||
@@ -14,6 +14,7 @@ std::string get_data_path();
|
||||
std::vector<int> get_data_read_shares();
|
||||
int64_t get_read_overlap_bytes();
|
||||
int64_t get_aggregation_interval();
|
||||
bool get_use_cuda();
|
||||
|
||||
// Структура для хранения диапазона байт для чтения
|
||||
struct ByteRange {
|
||||
|
||||
Reference in New Issue
Block a user