Compare commits
19 Commits
02a754f314
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| f5b6f0fc73 | |||
| 1cc9840d60 | |||
| dea7940e29 | |||
| f4ade418d6 | |||
| ab18d9770f | |||
| 6a22dc3ef7 | |||
| f90a641754 | |||
| 10bd6db2b8 | |||
| d82fde7116 | |||
| 7f16a5c17a | |||
| 44f297e55a | |||
| 68ea345a35 | |||
| 143e01b2dd | |||
| 73c9e580e4 | |||
| 78bdb1ddb7 | |||
| e0ba85db91 | |||
| 49b18bc199 | |||
| 8b0c57db63 | |||
| 38b5e6b211 |
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
data
|
||||
build
|
||||
out.txt
|
||||
*.csv
|
||||
@@ -1,8 +1,8 @@
|
||||
CXX = mpic++
|
||||
CXXFLAGS = -std=c++17 -O2 -Wall -Wextra -Wno-cast-function-type
|
||||
CXXFLAGS = -std=c++17 -O2 -Wall -Wextra -Wno-cast-function-type -fopenmp
|
||||
|
||||
NVCC = nvcc
|
||||
NVCCFLAGS = -O2 -Xcompiler -fPIC
|
||||
NVCCFLAGS = -O3 -std=c++17 -arch=sm_86 -Xcompiler -fPIC
|
||||
|
||||
SRC_DIR = src
|
||||
BUILD_DIR = build
|
||||
@@ -15,7 +15,7 @@ TARGET = $(BUILD_DIR)/bitcoin_app
|
||||
PLUGIN_SRC = $(SRC_DIR)/gpu_plugin.cu
|
||||
PLUGIN = $(BUILD_DIR)/libgpu_compute.so
|
||||
|
||||
all: $(BUILD_DIR) $(PLUGIN) $(TARGET)
|
||||
all: $(PLUGIN) $(TARGET)
|
||||
|
||||
$(BUILD_DIR):
|
||||
mkdir -p $(BUILD_DIR)
|
||||
@@ -32,4 +32,7 @@ $(PLUGIN): $(PLUGIN_SRC) | $(BUILD_DIR)
|
||||
clean:
|
||||
rm -rf $(BUILD_DIR)
|
||||
|
||||
.PHONY: all clean
|
||||
run: all
|
||||
sbatch run.slurm
|
||||
|
||||
.PHONY: all clean run
|
||||
47
README.md
Normal file
47
README.md
Normal file
@@ -0,0 +1,47 @@
|
||||
## Данные
|
||||
|
||||
[Kaggle Bitcoin Historical Data](https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data)
|
||||
|
||||
## Задание
|
||||
|
||||
Группируем данные по дням (Timestamp), за каждый день вычисляем среднюю цену
|
||||
(мат. ожидание по значениям Low и High), выводим в файл интервалы дат
|
||||
(начиная с начальной даты в наборе данных), за которые средняя дневная цена менялась
|
||||
не менее чем на 10% от даты начала интервала, вместе с минимальными и максимальными
|
||||
значениями Open и Close за все дни внутри интервала.
|
||||
|
||||
## Параллельное чтение данных
|
||||
|
||||
Нет смысла параллельно читать данные из NFS, так как в реальности файлы с данными
|
||||
будут лежать только на NFS сервере. То есть другие узлы лишь отправляют сетевые запросы
|
||||
на NFS сервер, который уже читает реальные данные с диска и лишь затем отправляет
|
||||
их другим узлам.
|
||||
|
||||
Чтобы этого избежать, нужно на всех машинах скопировать файлы с данными в их реальные
|
||||
файловые системы. Например в папку `/data`.
|
||||
|
||||
```sh
|
||||
# На каждом узле создаем директорию /data
|
||||
sudo mkdir /data
|
||||
sudo chown $USER /data
|
||||
|
||||
# Копируем данные
|
||||
cd /mnt/shared/supercomputers/data
|
||||
cp data.csv /data/
|
||||
```
|
||||
|
||||
## Сборка
|
||||
|
||||
Проект обязательно должен быть расположен в общей директории для всех узлов,
|
||||
например, в `/mnt/shared/supercomputers/build`.
|
||||
Перед запуском указать актуальный путь в `run.slurm`.
|
||||
|
||||
```sh
|
||||
make
|
||||
```
|
||||
|
||||
```sh
|
||||
make run
|
||||
```
|
||||
|
||||
Обязательно должны быть запущены все 4 нода. Результат будет в out.txt.
|
||||
115
benchmark.py
Normal file
115
benchmark.py
Normal file
@@ -0,0 +1,115 @@
|
||||
"""
|
||||
Запускает make run <number_of_runs> раз и считает статистику по времени выполнения.
|
||||
Тупо парсит out.txt и берём значение из строки "Total execution time: <time> sec".
|
||||
|
||||
python benchmark.py <number_of_runs>
|
||||
"""
|
||||
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import time
|
||||
import subprocess
|
||||
import statistics
|
||||
|
||||
N = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
||||
OUT = "out.txt"
|
||||
|
||||
TIME_RE = re.compile(r"Total execution time:\s*([0-9]*\.?[0-9]+)\s*sec")
|
||||
JOB_RE = re.compile(r"Submitted batch job\s+(\d+)")
|
||||
|
||||
APPEAR_TIMEOUT = 300.0 # ждать появления out.txt
|
||||
FINISH_TIMEOUT = 3600.0 # ждать появления Total execution time (сек)
|
||||
POLL = 0.2 # частота проверки файла
|
||||
|
||||
def wait_for_exists(path: str, timeout: float):
|
||||
t0 = time.time()
|
||||
while not os.path.exists(path):
|
||||
if time.time() - t0 > timeout:
|
||||
raise TimeoutError(f"{path} did not appear within {timeout} seconds")
|
||||
time.sleep(POLL)
|
||||
|
||||
def try_read(path: str) -> str:
|
||||
try:
|
||||
with open(path, "r", encoding="utf-8", errors="replace") as f:
|
||||
return f.read()
|
||||
except FileNotFoundError:
|
||||
return ""
|
||||
except OSError:
|
||||
# бывает, что файл на NFS в момент записи недоступен на чтение
|
||||
return ""
|
||||
|
||||
def wait_for_time_line(path: str, timeout: float) -> float:
|
||||
t0 = time.time()
|
||||
last_report = 0.0
|
||||
while True:
|
||||
txt = try_read(path)
|
||||
matches = TIME_RE.findall(txt)
|
||||
if matches:
|
||||
return float(matches[-1]) # последняя встреченная строка
|
||||
|
||||
now = time.time()
|
||||
if now - t0 > timeout:
|
||||
tail = txt[-800:] if txt else "<empty>"
|
||||
raise TimeoutError("Timed out waiting for 'Total execution time' line.\n"
|
||||
f"Last 800 chars of out.txt:\n{tail}")
|
||||
|
||||
# иногда полезно печатать прогресс раз в ~5 сек
|
||||
if now - last_report > 5.0:
|
||||
last_report = now
|
||||
if txt:
|
||||
# показать последнюю непустую строку
|
||||
lines = [l for l in txt.splitlines() if l.strip()]
|
||||
if lines:
|
||||
print(f" waiting... last line: {lines[-1][:120]}", flush=True)
|
||||
else:
|
||||
print(" waiting... (out.txt empty)", flush=True)
|
||||
else:
|
||||
print(" waiting... (out.txt not readable yet)", flush=True)
|
||||
|
||||
time.sleep(POLL)
|
||||
|
||||
times = []
|
||||
|
||||
for i in range(N):
|
||||
print(f"Run {i+1}/{N} ...", flush=True)
|
||||
|
||||
# удаляем out.txt перед запуском
|
||||
try:
|
||||
os.remove(OUT)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
# запускаем make run и забираем stdout (там будет Submitted batch job XXX)
|
||||
res = subprocess.run(["make", "run"], capture_output=True, text=True)
|
||||
out = (res.stdout or "") + "\n" + (res.stderr or "")
|
||||
|
||||
job_id = None
|
||||
m = JOB_RE.search(out)
|
||||
if m:
|
||||
job_id = m.group(1)
|
||||
print(f" submitted job {job_id}", flush=True)
|
||||
else:
|
||||
print(" (job id not detected; will only watch out.txt)", flush=True)
|
||||
|
||||
# ждём появления out.txt и появления строки с Total execution time
|
||||
wait_for_exists(OUT, APPEAR_TIMEOUT)
|
||||
t = wait_for_time_line(OUT, FINISH_TIMEOUT)
|
||||
|
||||
times.append(t)
|
||||
print(f" time = {t:.3f} sec", flush=True)
|
||||
|
||||
# опционально удалить out.txt после парсинга
|
||||
try:
|
||||
os.remove(OUT)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
print("\n=== RESULTS ===")
|
||||
print(f"Runs: {len(times)}")
|
||||
print(f"Mean: {statistics.mean(times):.3f} sec")
|
||||
print(f"Median: {statistics.median(times):.3f} sec")
|
||||
print(f"Min: {min(times):.3f} sec")
|
||||
print(f"Max: {max(times):.3f} sec")
|
||||
if len(times) > 1:
|
||||
print(f"Stddev: {statistics.stdev(times):.3f} sec")
|
||||
3
bitcoin-project/.gitignore
vendored
3
bitcoin-project/.gitignore
vendored
@@ -1,3 +0,0 @@
|
||||
data
|
||||
build
|
||||
out.txt
|
||||
@@ -1,12 +0,0 @@
|
||||
Проект обязательно должен быть расположен в общей директории для всех узлов,
|
||||
например, в `/mnt/shared/bitcoin-project`
|
||||
|
||||
```sh
|
||||
make
|
||||
```
|
||||
|
||||
```sh
|
||||
sbatch run.slurm
|
||||
```
|
||||
|
||||
Обязательно должны быть запущены все 4 нода. Результат будет в out.txt.
|
||||
@@ -1,10 +0,0 @@
|
||||
#!/bin/bash
|
||||
#SBATCH --job-name=btc
|
||||
#SBATCH --nodes=4
|
||||
#SBATCH --ntasks=4
|
||||
#SBATCH --output=out.txt
|
||||
|
||||
# mpirun -np $SLURM_NTASKS ./build/bitcoin_app
|
||||
|
||||
cd /mnt/shared/supercomputers/bitcoin-project/build
|
||||
mpirun -np $SLURM_NTASKS ./bitcoin_app
|
||||
@@ -1,47 +0,0 @@
|
||||
#include "csv_loader.hpp"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
std::vector<Record> load_csv(const std::string& filename) {
|
||||
std::vector<Record> data;
|
||||
std::ifstream file(filename);
|
||||
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("Cannot open file: " + filename);
|
||||
}
|
||||
|
||||
std::string line;
|
||||
|
||||
// читаем первую строку (заголовок)
|
||||
std::getline(file, line);
|
||||
|
||||
while (std::getline(file, line)) {
|
||||
std::stringstream ss(line);
|
||||
std::string item;
|
||||
|
||||
Record row;
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.timestamp = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.open = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.high = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.low = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.close = std::stod(item);
|
||||
|
||||
std::getline(ss, item, ',');
|
||||
row.volume = std::stod(item);
|
||||
|
||||
data.push_back(row);
|
||||
}
|
||||
|
||||
return data;
|
||||
}
|
||||
@@ -1,6 +0,0 @@
|
||||
#pragma once
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "record.hpp"
|
||||
|
||||
std::vector<Record> load_csv(const std::string& filename);
|
||||
@@ -1,12 +0,0 @@
|
||||
#include "gpu_loader.hpp"
|
||||
#include <dlfcn.h>
|
||||
|
||||
gpu_is_available_fn load_gpu_is_available() {
|
||||
void* h = dlopen("./libgpu_compute.so", RTLD_NOW | RTLD_LOCAL);
|
||||
if (!h) return nullptr;
|
||||
|
||||
auto fn = (gpu_is_available_fn)dlsym(h, "gpu_is_available");
|
||||
if (!fn) return nullptr;
|
||||
|
||||
return fn;
|
||||
}
|
||||
@@ -1,4 +0,0 @@
|
||||
#pragma once
|
||||
using gpu_is_available_fn = int (*)();
|
||||
|
||||
gpu_is_available_fn load_gpu_is_available();
|
||||
@@ -1,8 +0,0 @@
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
extern "C" int gpu_is_available() {
|
||||
int n = 0;
|
||||
cudaError_t err = cudaGetDeviceCount(&n);
|
||||
if (err != cudaSuccess) return 0;
|
||||
return (n > 0) ? 1 : 0;
|
||||
}
|
||||
@@ -1,86 +0,0 @@
|
||||
#include <mpi.h>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
#include "csv_loader.hpp"
|
||||
#include "utils.hpp"
|
||||
#include "record.hpp"
|
||||
#include "gpu_loader.hpp"
|
||||
|
||||
// Функция: отобрать записи для конкретного ранга
|
||||
std::vector<Record> select_records_for_rank(
|
||||
const std::map<long long, std::vector<Record>>& days,
|
||||
const std::vector<long long>& day_list)
|
||||
{
|
||||
std::vector<Record> out;
|
||||
for (auto d : day_list) {
|
||||
auto it = days.find(d);
|
||||
if (it != days.end()) {
|
||||
const auto& vec = it->second;
|
||||
out.insert(out.end(), vec.begin(), vec.end());
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
MPI_Init(&argc, &argv);
|
||||
|
||||
int rank, size;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &size);
|
||||
|
||||
std::vector<Record> local_records;
|
||||
|
||||
if (rank == 0) {
|
||||
std::cout << "Rank 0 loading CSV..." << std::endl;
|
||||
|
||||
auto records = load_csv("/mnt/shared/supercomputers/bitcoin-project/data/data.csv");
|
||||
|
||||
auto days = group_by_day(records);
|
||||
auto parts = split_days(days, size);
|
||||
|
||||
// Рассылаем данные
|
||||
for (int r = 0; r < size; r++) {
|
||||
auto vec = select_records_for_rank(days, parts[r]);
|
||||
|
||||
if (r == 0) {
|
||||
// себе не отправляем — сразу сохраняем
|
||||
local_records = vec;
|
||||
continue;
|
||||
}
|
||||
|
||||
int count = vec.size();
|
||||
MPI_Send(&count, 1, MPI_INT, r, 0, MPI_COMM_WORLD);
|
||||
MPI_Send(vec.data(), count * sizeof(Record), MPI_BYTE, r, 1, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// Принимает данные
|
||||
int count = 0;
|
||||
MPI_Recv(&count, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
local_records.resize(count);
|
||||
MPI_Recv(local_records.data(), count * sizeof(Record),
|
||||
MPI_BYTE, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
}
|
||||
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
|
||||
std::cout << "Rank " << rank << " received "
|
||||
<< local_records.size() << " records" << std::endl;
|
||||
|
||||
|
||||
auto gpu_is_available = load_gpu_is_available();
|
||||
int have_gpu = 0;
|
||||
if (gpu_is_available) {
|
||||
std::cout << "Rank " << rank << " dll loaded" << std::endl;
|
||||
have_gpu = gpu_is_available();
|
||||
}
|
||||
|
||||
std::cout << "Rank " << rank << ": gpu_available=" << have_gpu << "\n";
|
||||
|
||||
MPI_Finalize();
|
||||
return 0;
|
||||
}
|
||||
@@ -1,11 +0,0 @@
|
||||
#include "mpi_utils.hpp"
|
||||
#include <mpi.h>
|
||||
#include <iostream>
|
||||
|
||||
void mpi_print_basic() {
|
||||
int rank, size;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &size);
|
||||
|
||||
std::cout << "Hello from rank " << rank << " of " << size << std::endl;
|
||||
}
|
||||
@@ -1,2 +0,0 @@
|
||||
#pragma once
|
||||
void mpi_print_basic();
|
||||
@@ -1,25 +0,0 @@
|
||||
#include "utils.hpp"
|
||||
|
||||
std::map<DayIndex, std::vector<Record>> group_by_day(const std::vector<Record>& recs) {
|
||||
std::map<DayIndex, std::vector<Record>> days;
|
||||
|
||||
for (const auto& r : recs) {
|
||||
DayIndex day = static_cast<DayIndex>(r.timestamp) / 86400;
|
||||
days[day].push_back(r);
|
||||
}
|
||||
|
||||
return days;
|
||||
}
|
||||
|
||||
std::vector<std::vector<DayIndex>> split_days(const std::map<DayIndex, std::vector<Record>>& days, int parts) {
|
||||
std::vector<std::vector<DayIndex>> out(parts);
|
||||
|
||||
int i = 0;
|
||||
for (auto& kv : days) {
|
||||
out[i % parts].push_back(kv.first);
|
||||
i++;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
@@ -1,11 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "record.hpp"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
using DayIndex = long long;
|
||||
|
||||
std::map<DayIndex, std::vector<Record>> group_by_day(const std::vector<Record>& recs);
|
||||
std::vector<std::vector<DayIndex>> split_days(const std::map<DayIndex, std::vector<Record>>& days, int parts);
|
||||
|
||||
543
data.ipynb
Normal file
543
data.ipynb
Normal file
@@ -0,0 +1,543 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "2acce44b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "5ba70af7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Timestamp</th>\n",
|
||||
" <th>Open</th>\n",
|
||||
" <th>High</th>\n",
|
||||
" <th>Low</th>\n",
|
||||
" <th>Close</th>\n",
|
||||
" <th>Volume</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317754</th>\n",
|
||||
" <td>2025-11-30 23:55:00+00:00</td>\n",
|
||||
" <td>90405.0</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>90403.0</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>0.531700</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317755</th>\n",
|
||||
" <td>2025-11-30 23:56:00+00:00</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>90481.0</td>\n",
|
||||
" <td>90420.0</td>\n",
|
||||
" <td>90420.0</td>\n",
|
||||
" <td>0.055547</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317756</th>\n",
|
||||
" <td>2025-11-30 23:57:00+00:00</td>\n",
|
||||
" <td>90412.0</td>\n",
|
||||
" <td>90458.0</td>\n",
|
||||
" <td>90396.0</td>\n",
|
||||
" <td>90435.0</td>\n",
|
||||
" <td>0.301931</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317757</th>\n",
|
||||
" <td>2025-11-30 23:58:00+00:00</td>\n",
|
||||
" <td>90428.0</td>\n",
|
||||
" <td>90428.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>4.591653</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317758</th>\n",
|
||||
" <td>2025-11-30 23:59:00+00:00</td>\n",
|
||||
" <td>90363.0</td>\n",
|
||||
" <td>90386.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>90382.0</td>\n",
|
||||
" <td>0.410369</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Timestamp Open High Low Close \\\n",
|
||||
"7317754 2025-11-30 23:55:00+00:00 90405.0 90452.0 90403.0 90452.0 \n",
|
||||
"7317755 2025-11-30 23:56:00+00:00 90452.0 90481.0 90420.0 90420.0 \n",
|
||||
"7317756 2025-11-30 23:57:00+00:00 90412.0 90458.0 90396.0 90435.0 \n",
|
||||
"7317757 2025-11-30 23:58:00+00:00 90428.0 90428.0 90362.0 90362.0 \n",
|
||||
"7317758 2025-11-30 23:59:00+00:00 90363.0 90386.0 90362.0 90382.0 \n",
|
||||
"\n",
|
||||
" Volume \n",
|
||||
"7317754 0.531700 \n",
|
||||
"7317755 0.055547 \n",
|
||||
"7317756 0.301931 \n",
|
||||
"7317757 4.591653 \n",
|
||||
"7317758 0.410369 "
|
||||
]
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df = pd.read_csv(\"data.csv\")\n",
|
||||
"df['Timestamp'] = pd.to_datetime(df['Timestamp'], unit='s', utc=True)\n",
|
||||
"df.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "3b320537",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Timestamp</th>\n",
|
||||
" <th>Open</th>\n",
|
||||
" <th>High</th>\n",
|
||||
" <th>Low</th>\n",
|
||||
" <th>Close</th>\n",
|
||||
" <th>Volume</th>\n",
|
||||
" <th>Avg</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317754</th>\n",
|
||||
" <td>2025-11-30 23:55:00+00:00</td>\n",
|
||||
" <td>90405.0</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>90403.0</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>0.531700</td>\n",
|
||||
" <td>90427.5</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317755</th>\n",
|
||||
" <td>2025-11-30 23:56:00+00:00</td>\n",
|
||||
" <td>90452.0</td>\n",
|
||||
" <td>90481.0</td>\n",
|
||||
" <td>90420.0</td>\n",
|
||||
" <td>90420.0</td>\n",
|
||||
" <td>0.055547</td>\n",
|
||||
" <td>90450.5</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317756</th>\n",
|
||||
" <td>2025-11-30 23:57:00+00:00</td>\n",
|
||||
" <td>90412.0</td>\n",
|
||||
" <td>90458.0</td>\n",
|
||||
" <td>90396.0</td>\n",
|
||||
" <td>90435.0</td>\n",
|
||||
" <td>0.301931</td>\n",
|
||||
" <td>90427.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317757</th>\n",
|
||||
" <td>2025-11-30 23:58:00+00:00</td>\n",
|
||||
" <td>90428.0</td>\n",
|
||||
" <td>90428.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>4.591653</td>\n",
|
||||
" <td>90395.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7317758</th>\n",
|
||||
" <td>2025-11-30 23:59:00+00:00</td>\n",
|
||||
" <td>90363.0</td>\n",
|
||||
" <td>90386.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>90382.0</td>\n",
|
||||
" <td>0.410369</td>\n",
|
||||
" <td>90374.0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Timestamp Open High Low Close \\\n",
|
||||
"7317754 2025-11-30 23:55:00+00:00 90405.0 90452.0 90403.0 90452.0 \n",
|
||||
"7317755 2025-11-30 23:56:00+00:00 90452.0 90481.0 90420.0 90420.0 \n",
|
||||
"7317756 2025-11-30 23:57:00+00:00 90412.0 90458.0 90396.0 90435.0 \n",
|
||||
"7317757 2025-11-30 23:58:00+00:00 90428.0 90428.0 90362.0 90362.0 \n",
|
||||
"7317758 2025-11-30 23:59:00+00:00 90363.0 90386.0 90362.0 90382.0 \n",
|
||||
"\n",
|
||||
" Volume Avg \n",
|
||||
"7317754 0.531700 90427.5 \n",
|
||||
"7317755 0.055547 90450.5 \n",
|
||||
"7317756 0.301931 90427.0 \n",
|
||||
"7317757 4.591653 90395.0 \n",
|
||||
"7317758 0.410369 90374.0 "
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df['Avg'] = (df['Low'] + df['High']) / 2\n",
|
||||
"df.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "4b1cd63c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Timestamp</th>\n",
|
||||
" <th>Avg</th>\n",
|
||||
" <th>OpenMin</th>\n",
|
||||
" <th>OpenMax</th>\n",
|
||||
" <th>CloseMin</th>\n",
|
||||
" <th>CloseMax</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>5078</th>\n",
|
||||
" <td>2025-11-26</td>\n",
|
||||
" <td>88057.301736</td>\n",
|
||||
" <td>86312.0</td>\n",
|
||||
" <td>90574.0</td>\n",
|
||||
" <td>86323.0</td>\n",
|
||||
" <td>90574.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5079</th>\n",
|
||||
" <td>2025-11-27</td>\n",
|
||||
" <td>91245.092708</td>\n",
|
||||
" <td>90126.0</td>\n",
|
||||
" <td>91888.0</td>\n",
|
||||
" <td>90126.0</td>\n",
|
||||
" <td>91925.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5080</th>\n",
|
||||
" <td>2025-11-28</td>\n",
|
||||
" <td>91324.308681</td>\n",
|
||||
" <td>90255.0</td>\n",
|
||||
" <td>92970.0</td>\n",
|
||||
" <td>90283.0</td>\n",
|
||||
" <td>92966.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5081</th>\n",
|
||||
" <td>2025-11-29</td>\n",
|
||||
" <td>90746.479514</td>\n",
|
||||
" <td>90265.0</td>\n",
|
||||
" <td>91158.0</td>\n",
|
||||
" <td>90279.0</td>\n",
|
||||
" <td>91179.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5082</th>\n",
|
||||
" <td>2025-11-30</td>\n",
|
||||
" <td>91187.356250</td>\n",
|
||||
" <td>90363.0</td>\n",
|
||||
" <td>91940.0</td>\n",
|
||||
" <td>90362.0</td>\n",
|
||||
" <td>91940.0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Timestamp Avg OpenMin OpenMax CloseMin CloseMax\n",
|
||||
"5078 2025-11-26 88057.301736 86312.0 90574.0 86323.0 90574.0\n",
|
||||
"5079 2025-11-27 91245.092708 90126.0 91888.0 90126.0 91925.0\n",
|
||||
"5080 2025-11-28 91324.308681 90255.0 92970.0 90283.0 92966.0\n",
|
||||
"5081 2025-11-29 90746.479514 90265.0 91158.0 90279.0 91179.0\n",
|
||||
"5082 2025-11-30 91187.356250 90363.0 91940.0 90362.0 91940.0"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_days = (\n",
|
||||
" df.groupby(df[\"Timestamp\"].dt.date)\n",
|
||||
" .agg(\n",
|
||||
" Avg=(\"Avg\", \"mean\"),\n",
|
||||
" OpenMin=(\"Open\", \"min\"),\n",
|
||||
" OpenMax=(\"Open\", \"max\"),\n",
|
||||
" CloseMin=(\"Close\", \"min\"),\n",
|
||||
" CloseMax=(\"Close\", \"max\"),\n",
|
||||
" )\n",
|
||||
" .reset_index()\n",
|
||||
")\n",
|
||||
"df_days.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "9a7b3310",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>start_date</th>\n",
|
||||
" <th>end_date</th>\n",
|
||||
" <th>min_open</th>\n",
|
||||
" <th>max_open</th>\n",
|
||||
" <th>min_close</th>\n",
|
||||
" <th>max_close</th>\n",
|
||||
" <th>start_avg</th>\n",
|
||||
" <th>end_avg</th>\n",
|
||||
" <th>change</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>316</th>\n",
|
||||
" <td>2025-02-27</td>\n",
|
||||
" <td>2025-04-25</td>\n",
|
||||
" <td>74509.0</td>\n",
|
||||
" <td>95801.0</td>\n",
|
||||
" <td>74515.0</td>\n",
|
||||
" <td>95800.0</td>\n",
|
||||
" <td>85166.063889</td>\n",
|
||||
" <td>94303.907292</td>\n",
|
||||
" <td>0.107294</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>317</th>\n",
|
||||
" <td>2025-04-26</td>\n",
|
||||
" <td>2025-05-11</td>\n",
|
||||
" <td>92877.0</td>\n",
|
||||
" <td>104971.0</td>\n",
|
||||
" <td>92872.0</td>\n",
|
||||
" <td>104965.0</td>\n",
|
||||
" <td>94500.950347</td>\n",
|
||||
" <td>104182.167708</td>\n",
|
||||
" <td>0.102446</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>318</th>\n",
|
||||
" <td>2025-05-12</td>\n",
|
||||
" <td>2025-07-11</td>\n",
|
||||
" <td>98384.0</td>\n",
|
||||
" <td>118833.0</td>\n",
|
||||
" <td>98382.0</td>\n",
|
||||
" <td>118839.0</td>\n",
|
||||
" <td>103569.791319</td>\n",
|
||||
" <td>117463.666667</td>\n",
|
||||
" <td>0.134150</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>319</th>\n",
|
||||
" <td>2025-07-12</td>\n",
|
||||
" <td>2025-11-04</td>\n",
|
||||
" <td>98944.0</td>\n",
|
||||
" <td>126202.0</td>\n",
|
||||
" <td>98943.0</td>\n",
|
||||
" <td>126202.0</td>\n",
|
||||
" <td>117640.026389</td>\n",
|
||||
" <td>103712.985764</td>\n",
|
||||
" <td>0.118387</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>320</th>\n",
|
||||
" <td>2025-11-05</td>\n",
|
||||
" <td>2025-11-18</td>\n",
|
||||
" <td>89291.0</td>\n",
|
||||
" <td>107343.0</td>\n",
|
||||
" <td>89286.0</td>\n",
|
||||
" <td>107343.0</td>\n",
|
||||
" <td>102514.621181</td>\n",
|
||||
" <td>91705.833333</td>\n",
|
||||
" <td>0.105437</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" start_date end_date min_open max_open min_close max_close \\\n",
|
||||
"316 2025-02-27 2025-04-25 74509.0 95801.0 74515.0 95800.0 \n",
|
||||
"317 2025-04-26 2025-05-11 92877.0 104971.0 92872.0 104965.0 \n",
|
||||
"318 2025-05-12 2025-07-11 98384.0 118833.0 98382.0 118839.0 \n",
|
||||
"319 2025-07-12 2025-11-04 98944.0 126202.0 98943.0 126202.0 \n",
|
||||
"320 2025-11-05 2025-11-18 89291.0 107343.0 89286.0 107343.0 \n",
|
||||
"\n",
|
||||
" start_avg end_avg change \n",
|
||||
"316 85166.063889 94303.907292 0.107294 \n",
|
||||
"317 94500.950347 104182.167708 0.102446 \n",
|
||||
"318 103569.791319 117463.666667 0.134150 \n",
|
||||
"319 117640.026389 103712.985764 0.118387 \n",
|
||||
"320 102514.621181 91705.833333 0.105437 "
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"intervals = []\n",
|
||||
"start_idx = 0\n",
|
||||
"price_base = df_days.loc[start_idx, \"Avg\"]\n",
|
||||
"\n",
|
||||
"for i in range(1, len(df_days)):\n",
|
||||
" price_now = df_days.loc[i, \"Avg\"]\n",
|
||||
" change = abs(price_now - price_base) / price_base\n",
|
||||
"\n",
|
||||
" if change >= 0.10:\n",
|
||||
" interval = df_days.loc[start_idx:i]\n",
|
||||
" \n",
|
||||
" intervals.append({\n",
|
||||
" \"start_date\": df_days.loc[start_idx, \"Timestamp\"],\n",
|
||||
" \"end_date\": df_days.loc[i, \"Timestamp\"],\n",
|
||||
" \"min_open\": interval[\"OpenMin\"].min(),\n",
|
||||
" \"max_open\": interval[\"OpenMax\"].max(),\n",
|
||||
" \"min_close\": interval[\"CloseMin\"].min(),\n",
|
||||
" \"max_close\": interval[\"CloseMax\"].max(),\n",
|
||||
" \"start_avg\": price_base,\n",
|
||||
" \"end_avg\": price_now,\n",
|
||||
" \"change\": change,\n",
|
||||
" })\n",
|
||||
"\n",
|
||||
" start_idx = i + 1\n",
|
||||
" if start_idx >= len(df_days):\n",
|
||||
" break\n",
|
||||
" price_base = df_days.loc[start_idx, \"Avg\"]\n",
|
||||
"\n",
|
||||
"df_intervals = pd.DataFrame(intervals)\n",
|
||||
"df_intervals.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "07f1cd58",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
19
run.slurm
Normal file
19
run.slurm
Normal file
@@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
#SBATCH --job-name=btc
|
||||
#SBATCH --nodes=4
|
||||
#SBATCH --ntasks=4
|
||||
#SBATCH --cpus-per-task=2
|
||||
#SBATCH --output=out.txt
|
||||
|
||||
# Путь к файлу данных (должен существовать на всех узлах)
|
||||
export DATA_PATH="/mnt/shared/supercomputers/data/data.csv"
|
||||
# export DATA_PATH="/data/data.csv"
|
||||
|
||||
# Доли данных для каждого ранка (сумма определяет пропорции)
|
||||
export DATA_READ_SHARES="10,14,18,22"
|
||||
|
||||
# Размер перекрытия в байтах для обработки границ строк
|
||||
export READ_OVERLAP_BYTES=131072
|
||||
|
||||
cd /mnt/shared/supercomputers/build
|
||||
mpirun -np $SLURM_NTASKS ./bitcoin_app
|
||||
48
src/aggregation.cpp
Normal file
48
src/aggregation.cpp
Normal file
@@ -0,0 +1,48 @@
|
||||
#include "aggregation.hpp"
|
||||
#include <map>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
|
||||
std::vector<DayStats> aggregate_days(const std::vector<Record>& records) {
|
||||
// Накопители для каждого дня
|
||||
struct DayAccumulator {
|
||||
double avg_sum = 0.0;
|
||||
double open_min = std::numeric_limits<double>::max();
|
||||
double open_max = std::numeric_limits<double>::lowest();
|
||||
double close_min = std::numeric_limits<double>::max();
|
||||
double close_max = std::numeric_limits<double>::lowest();
|
||||
int64_t count = 0;
|
||||
};
|
||||
|
||||
std::map<DayIndex, DayAccumulator> days;
|
||||
|
||||
for (const auto& r : records) {
|
||||
DayIndex day = static_cast<DayIndex>(r.timestamp) / 86400;
|
||||
auto& acc = days[day];
|
||||
|
||||
double avg = (r.low + r.high) / 2.0;
|
||||
acc.avg_sum += avg;
|
||||
acc.open_min = std::min(acc.open_min, r.open);
|
||||
acc.open_max = std::max(acc.open_max, r.open);
|
||||
acc.close_min = std::min(acc.close_min, r.close);
|
||||
acc.close_max = std::max(acc.close_max, r.close);
|
||||
acc.count++;
|
||||
}
|
||||
|
||||
std::vector<DayStats> result;
|
||||
result.reserve(days.size());
|
||||
|
||||
for (const auto& [day, acc] : days) {
|
||||
DayStats stats;
|
||||
stats.day = day;
|
||||
stats.avg = acc.avg_sum / static_cast<double>(acc.count);
|
||||
stats.open_min = acc.open_min;
|
||||
stats.open_max = acc.open_max;
|
||||
stats.close_min = acc.close_min;
|
||||
stats.close_max = acc.close_max;
|
||||
stats.count = acc.count;
|
||||
result.push_back(stats);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
8
src/aggregation.hpp
Normal file
8
src/aggregation.hpp
Normal file
@@ -0,0 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "record.hpp"
|
||||
#include "day_stats.hpp"
|
||||
#include <vector>
|
||||
|
||||
// Агрегация записей по дням на одном узле
|
||||
std::vector<DayStats> aggregate_days(const std::vector<Record>& records);
|
||||
135
src/csv_loader.cpp
Normal file
135
src/csv_loader.cpp
Normal file
@@ -0,0 +1,135 @@
|
||||
#include "csv_loader.hpp"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
bool parse_csv_line(const std::string& line, Record& record) {
|
||||
if (line.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
std::stringstream ss(line);
|
||||
std::string item;
|
||||
|
||||
try {
|
||||
// timestamp
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.timestamp = std::stod(item);
|
||||
|
||||
// open
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.open = std::stod(item);
|
||||
|
||||
// high
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.high = std::stod(item);
|
||||
|
||||
// low
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.low = std::stod(item);
|
||||
|
||||
// close
|
||||
if (!std::getline(ss, item, ',') || item.empty()) return false;
|
||||
record.close = std::stod(item);
|
||||
|
||||
// volume
|
||||
if (!std::getline(ss, item, ',')) return false;
|
||||
// Volume может быть пустым или содержать данные
|
||||
if (item.empty()) {
|
||||
record.volume = 0.0;
|
||||
} else {
|
||||
record.volume = std::stod(item);
|
||||
}
|
||||
|
||||
return true;
|
||||
} catch (const std::exception&) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Record> load_csv_parallel(int rank, int size) {
|
||||
std::vector<Record> data;
|
||||
|
||||
// Читаем настройки из переменных окружения
|
||||
std::string data_path = get_data_path();
|
||||
std::vector<int> shares = get_data_read_shares();
|
||||
int64_t overlap_bytes = get_read_overlap_bytes();
|
||||
|
||||
// Получаем размер файла
|
||||
int64_t file_size = get_file_size(data_path);
|
||||
|
||||
// Вычисляем диапазон байт для этого ранка
|
||||
ByteRange range = calculate_byte_range(rank, size, file_size, shares, overlap_bytes);
|
||||
|
||||
// Открываем файл и читаем нужный диапазон
|
||||
std::ifstream file(data_path, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("Cannot open file: " + data_path);
|
||||
}
|
||||
|
||||
// Переходим к началу диапазона
|
||||
file.seekg(range.start);
|
||||
|
||||
// Читаем данные в буфер
|
||||
int64_t bytes_to_read = range.end - range.start;
|
||||
std::vector<char> buffer(bytes_to_read);
|
||||
file.read(buffer.data(), bytes_to_read);
|
||||
int64_t bytes_read = file.gcount();
|
||||
|
||||
file.close();
|
||||
|
||||
// Преобразуем в строку для удобства парсинга
|
||||
std::string content(buffer.data(), bytes_read);
|
||||
|
||||
// Находим позицию начала первой полной строки
|
||||
size_t parse_start = 0;
|
||||
if (rank == 0) {
|
||||
// Первый ранк: пропускаем заголовок (первую строку)
|
||||
size_t header_end = content.find('\n');
|
||||
if (header_end != std::string::npos) {
|
||||
parse_start = header_end + 1;
|
||||
}
|
||||
} else {
|
||||
// Остальные ранки: начинаем с первого \n (пропускаем неполную строку)
|
||||
size_t first_newline = content.find('\n');
|
||||
if (first_newline != std::string::npos) {
|
||||
parse_start = first_newline + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Находим позицию конца последней полной строки
|
||||
size_t parse_end = content.size();
|
||||
if (rank != size - 1) {
|
||||
// Не последний ранк: ищем последний \n
|
||||
size_t last_newline = content.rfind('\n');
|
||||
if (last_newline != std::string::npos && last_newline > parse_start) {
|
||||
parse_end = last_newline;
|
||||
}
|
||||
}
|
||||
|
||||
// Парсим строки
|
||||
size_t pos = parse_start;
|
||||
while (pos < parse_end) {
|
||||
size_t line_end = content.find('\n', pos);
|
||||
if (line_end == std::string::npos || line_end > parse_end) {
|
||||
line_end = parse_end;
|
||||
}
|
||||
|
||||
std::string line = content.substr(pos, line_end - pos);
|
||||
|
||||
// Убираем \r если есть (Windows line endings)
|
||||
if (!line.empty() && line.back() == '\r') {
|
||||
line.pop_back();
|
||||
}
|
||||
|
||||
Record record;
|
||||
if (parse_csv_line(line, record)) {
|
||||
data.push_back(record);
|
||||
}
|
||||
|
||||
pos = line_end + 1;
|
||||
}
|
||||
|
||||
return data;
|
||||
}
|
||||
15
src/csv_loader.hpp
Normal file
15
src/csv_loader.hpp
Normal file
@@ -0,0 +1,15 @@
|
||||
#pragma once
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "record.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
// Параллельное чтение CSV файла для MPI
|
||||
// rank - номер текущего ранка
|
||||
// size - общее количество ранков
|
||||
// Возвращает вектор записей, прочитанных этим ранком
|
||||
std::vector<Record> load_csv_parallel(int rank, int size);
|
||||
|
||||
// Парсинг одной строки CSV в Record
|
||||
// Возвращает true если парсинг успешен
|
||||
bool parse_csv_line(const std::string& line, Record& record);
|
||||
15
src/day_stats.hpp
Normal file
15
src/day_stats.hpp
Normal file
@@ -0,0 +1,15 @@
|
||||
#pragma once
|
||||
#include <cstdint>
|
||||
|
||||
using DayIndex = int64_t;
|
||||
|
||||
// Агрегированные данные за один день
|
||||
struct DayStats {
|
||||
DayIndex day; // индекс дня (timestamp / 86400)
|
||||
double avg; // среднее значение (Low + High) / 2 по всем записям
|
||||
double open_min; // минимальный Open за день
|
||||
double open_max; // максимальный Open за день
|
||||
double close_min; // минимальный Close за день
|
||||
double close_max; // максимальный Close за день
|
||||
int64_t count; // количество записей, по которым агрегировали
|
||||
};
|
||||
145
src/gpu_loader.cpp
Normal file
145
src/gpu_loader.cpp
Normal file
@@ -0,0 +1,145 @@
|
||||
#include "gpu_loader.hpp"
|
||||
#include <dlfcn.h>
|
||||
#include <map>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <omp.h>
|
||||
|
||||
static void* get_gpu_lib_handle() {
|
||||
static void* h = dlopen("./libgpu_compute.so", RTLD_NOW | RTLD_LOCAL);
|
||||
return h;
|
||||
}
|
||||
|
||||
gpu_is_available_fn load_gpu_is_available() {
|
||||
void* h = get_gpu_lib_handle();
|
||||
if (!h) return nullptr;
|
||||
|
||||
auto fn = (gpu_is_available_fn)dlsym(h, "gpu_is_available");
|
||||
return fn;
|
||||
}
|
||||
|
||||
bool gpu_is_available() {
|
||||
auto gpu_is_available_fn = load_gpu_is_available();
|
||||
|
||||
if (gpu_is_available_fn && gpu_is_available_fn()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
gpu_aggregate_days_fn load_gpu_aggregate_days() {
|
||||
void* h = get_gpu_lib_handle();
|
||||
if (!h) return nullptr;
|
||||
|
||||
auto fn = (gpu_aggregate_days_fn)dlsym(h, "gpu_aggregate_days");
|
||||
return fn;
|
||||
}
|
||||
|
||||
bool aggregate_days_gpu(
|
||||
const std::vector<Record>& records,
|
||||
std::vector<DayStats>& out_stats,
|
||||
gpu_aggregate_days_fn gpu_fn)
|
||||
{
|
||||
if (!gpu_fn || records.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Общий таймер всей функции
|
||||
double t_total_start = omp_get_wtime();
|
||||
|
||||
// Таймер CPU preprocessing
|
||||
double t_preprocess_start = omp_get_wtime();
|
||||
|
||||
// Группируем записи по дням и подготавливаем данные для GPU
|
||||
std::map<DayIndex, std::vector<size_t>> day_record_indices;
|
||||
|
||||
for (size_t i = 0; i < records.size(); i++) {
|
||||
DayIndex day = static_cast<DayIndex>(records[i].timestamp) / 86400;
|
||||
day_record_indices[day].push_back(i);
|
||||
}
|
||||
|
||||
int num_days = static_cast<int>(day_record_indices.size());
|
||||
|
||||
// Подготавливаем массивы для GPU
|
||||
std::vector<GpuRecord> gpu_records;
|
||||
std::vector<int> day_offsets;
|
||||
std::vector<int> day_counts;
|
||||
std::vector<long long> day_indices;
|
||||
|
||||
gpu_records.reserve(records.size());
|
||||
day_offsets.reserve(num_days);
|
||||
day_counts.reserve(num_days);
|
||||
day_indices.reserve(num_days);
|
||||
|
||||
int current_offset = 0;
|
||||
|
||||
for (auto& [day, indices] : day_record_indices) {
|
||||
day_indices.push_back(day);
|
||||
day_offsets.push_back(current_offset);
|
||||
day_counts.push_back(static_cast<int>(indices.size()));
|
||||
|
||||
// Добавляем записи этого дня
|
||||
for (size_t idx : indices) {
|
||||
const auto& r = records[idx];
|
||||
GpuRecord gr;
|
||||
gr.timestamp = r.timestamp;
|
||||
gr.open = r.open;
|
||||
gr.high = r.high;
|
||||
gr.low = r.low;
|
||||
gr.close = r.close;
|
||||
gr.volume = r.volume;
|
||||
gpu_records.push_back(gr);
|
||||
}
|
||||
|
||||
current_offset += static_cast<int>(indices.size());
|
||||
}
|
||||
|
||||
// Выделяем память для результата
|
||||
std::vector<GpuDayStats> gpu_stats(num_days);
|
||||
|
||||
double t_preprocess_ms = (omp_get_wtime() - t_preprocess_start) * 1000.0;
|
||||
std::cout << " GPU CPU preprocessing: " << std::fixed << std::setprecision(3)
|
||||
<< std::setw(7) << t_preprocess_ms << " ms" << std::endl << std::flush;
|
||||
|
||||
// Вызываем GPU функцию (включает: malloc, memcpy H->D, kernel, memcpy D->H, free)
|
||||
// Детальные тайминги выводятся внутри GPU функции
|
||||
int result = gpu_fn(
|
||||
gpu_records.data(),
|
||||
static_cast<int>(gpu_records.size()),
|
||||
day_offsets.data(),
|
||||
day_counts.data(),
|
||||
day_indices.data(),
|
||||
num_days,
|
||||
gpu_stats.data()
|
||||
);
|
||||
|
||||
if (result != 0) {
|
||||
std::cout << " GPU: Function returned error code " << result << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Конвертируем результат в DayStats
|
||||
out_stats.clear();
|
||||
out_stats.reserve(num_days);
|
||||
|
||||
for (const auto& gs : gpu_stats) {
|
||||
DayStats ds;
|
||||
ds.day = gs.day;
|
||||
ds.avg = gs.avg;
|
||||
ds.open_min = gs.open_min;
|
||||
ds.open_max = gs.open_max;
|
||||
ds.close_min = gs.close_min;
|
||||
ds.close_max = gs.close_max;
|
||||
ds.count = gs.count;
|
||||
out_stats.push_back(ds);
|
||||
}
|
||||
|
||||
// Общее время всей GPU функции (включая preprocessing)
|
||||
double t_total_ms = (omp_get_wtime() - t_total_start) * 1000.0;
|
||||
std::cout << " GPU TOTAL (with prep): " << std::fixed << std::setprecision(3)
|
||||
<< std::setw(7) << t_total_ms << " ms" << std::endl << std::flush;
|
||||
|
||||
return true;
|
||||
}
|
||||
50
src/gpu_loader.hpp
Normal file
50
src/gpu_loader.hpp
Normal file
@@ -0,0 +1,50 @@
|
||||
#pragma once
|
||||
#include "day_stats.hpp"
|
||||
#include "record.hpp"
|
||||
#include <vector>
|
||||
|
||||
bool gpu_is_available();
|
||||
|
||||
// Типы функций из GPU плагина
|
||||
using gpu_is_available_fn = int (*)();
|
||||
|
||||
// Структуры для GPU (должны совпадать с gpu_plugin.cu)
|
||||
struct GpuRecord {
|
||||
double timestamp;
|
||||
double open;
|
||||
double high;
|
||||
double low;
|
||||
double close;
|
||||
double volume;
|
||||
};
|
||||
|
||||
struct GpuDayStats {
|
||||
long long day;
|
||||
double avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
long long count;
|
||||
};
|
||||
|
||||
using gpu_aggregate_days_fn = int (*)(
|
||||
const GpuRecord* h_records,
|
||||
int num_records,
|
||||
const int* h_day_offsets,
|
||||
const int* h_day_counts,
|
||||
const long long* h_day_indices,
|
||||
int num_days,
|
||||
GpuDayStats* h_out_stats
|
||||
);
|
||||
|
||||
// Загрузка функций из плагина
|
||||
gpu_is_available_fn load_gpu_is_available();
|
||||
gpu_aggregate_days_fn load_gpu_aggregate_days();
|
||||
|
||||
// Обёртка для агрегации на GPU (возвращает true если успешно)
|
||||
bool aggregate_days_gpu(
|
||||
const std::vector<Record>& records,
|
||||
std::vector<DayStats>& out_stats,
|
||||
gpu_aggregate_days_fn gpu_fn
|
||||
);
|
||||
262
src/gpu_plugin.cu
Normal file
262
src/gpu_plugin.cu
Normal file
@@ -0,0 +1,262 @@
|
||||
#include <cuda_runtime.h>
|
||||
#include <cstdint>
|
||||
#include <cfloat>
|
||||
#include <cstdio>
|
||||
#include <ctime>
|
||||
|
||||
// CPU таймер в миллисекундах
|
||||
static double get_time_ms() {
|
||||
struct timespec ts;
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||
return ts.tv_sec * 1000.0 + ts.tv_nsec / 1000000.0;
|
||||
}
|
||||
|
||||
// Структуры данных (должны совпадать с C++ кодом)
|
||||
struct GpuRecord {
|
||||
double timestamp;
|
||||
double open;
|
||||
double high;
|
||||
double low;
|
||||
double close;
|
||||
double volume;
|
||||
};
|
||||
|
||||
struct GpuDayStats {
|
||||
long long day;
|
||||
double avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
long long count;
|
||||
};
|
||||
|
||||
extern "C" int gpu_is_available() {
|
||||
int n = 0;
|
||||
cudaError_t err = cudaGetDeviceCount(&n);
|
||||
if (err != cudaSuccess) return 0;
|
||||
if (n > 0) {
|
||||
// Инициализируем CUDA контекст заранее (cudaFree(0) форсирует инициализацию)
|
||||
cudaFree(0);
|
||||
}
|
||||
return (n > 0) ? 1 : 0;
|
||||
}
|
||||
|
||||
// Kernel для агрегации (каждый поток обрабатывает один день)
|
||||
__global__ void aggregate_kernel(
|
||||
const GpuRecord* records,
|
||||
int num_records,
|
||||
const int* day_offsets, // начало каждого дня в массиве records
|
||||
const int* day_counts, // количество записей в каждом дне
|
||||
const long long* day_indices, // индексы дней
|
||||
int num_days,
|
||||
GpuDayStats* out_stats)
|
||||
{
|
||||
// Глобальный индекс потока = индекс дня
|
||||
int d = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (d >= num_days) return;
|
||||
|
||||
int offset = day_offsets[d];
|
||||
int count = day_counts[d];
|
||||
|
||||
GpuDayStats stats;
|
||||
stats.day = day_indices[d];
|
||||
stats.open_min = DBL_MAX;
|
||||
stats.open_max = -DBL_MAX;
|
||||
stats.close_min = DBL_MAX;
|
||||
stats.close_max = -DBL_MAX;
|
||||
stats.count = count;
|
||||
|
||||
double avg_sum = 0.0;
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
const GpuRecord& r = records[offset + i];
|
||||
|
||||
// Accumulate avg = (low + high) / 2
|
||||
avg_sum += (r.low + r.high) / 2.0;
|
||||
|
||||
// min/max Open
|
||||
if (r.open < stats.open_min) stats.open_min = r.open;
|
||||
if (r.open > stats.open_max) stats.open_max = r.open;
|
||||
|
||||
// min/max Close
|
||||
if (r.close < stats.close_min) stats.close_min = r.close;
|
||||
if (r.close > stats.close_max) stats.close_max = r.close;
|
||||
}
|
||||
|
||||
stats.avg = avg_sum / static_cast<double>(count);
|
||||
out_stats[d] = stats;
|
||||
}
|
||||
|
||||
// Функция агрегации, вызываемая из C++
|
||||
extern "C" int gpu_aggregate_days(
|
||||
const GpuRecord* h_records,
|
||||
int num_records,
|
||||
const int* h_day_offsets,
|
||||
const int* h_day_counts,
|
||||
const long long* h_day_indices,
|
||||
int num_days,
|
||||
GpuDayStats* h_out_stats)
|
||||
{
|
||||
double cpu_total_start = get_time_ms();
|
||||
|
||||
// === Создаём CUDA события для измерения времени ===
|
||||
double cpu_event_create_start = get_time_ms();
|
||||
|
||||
cudaEvent_t start_malloc, stop_malloc;
|
||||
cudaEvent_t start_transfer, stop_transfer;
|
||||
cudaEvent_t start_kernel, stop_kernel;
|
||||
cudaEvent_t start_copy_back, stop_copy_back;
|
||||
cudaEvent_t start_free, stop_free;
|
||||
|
||||
cudaEventCreate(&start_malloc);
|
||||
cudaEventCreate(&stop_malloc);
|
||||
cudaEventCreate(&start_transfer);
|
||||
cudaEventCreate(&stop_transfer);
|
||||
cudaEventCreate(&start_kernel);
|
||||
cudaEventCreate(&stop_kernel);
|
||||
cudaEventCreate(&start_copy_back);
|
||||
cudaEventCreate(&stop_copy_back);
|
||||
cudaEventCreate(&start_free);
|
||||
cudaEventCreate(&stop_free);
|
||||
|
||||
double cpu_event_create_ms = get_time_ms() - cpu_event_create_start;
|
||||
|
||||
// === ИЗМЕРЕНИЕ cudaMalloc ===
|
||||
cudaEventRecord(start_malloc);
|
||||
|
||||
GpuRecord* d_records = nullptr;
|
||||
int* d_day_offsets = nullptr;
|
||||
int* d_day_counts = nullptr;
|
||||
long long* d_day_indices = nullptr;
|
||||
GpuDayStats* d_out_stats = nullptr;
|
||||
|
||||
cudaError_t err;
|
||||
|
||||
err = cudaMalloc(&d_records, num_records * sizeof(GpuRecord));
|
||||
if (err != cudaSuccess) return -1;
|
||||
|
||||
err = cudaMalloc(&d_day_offsets, num_days * sizeof(int));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); return -2; }
|
||||
|
||||
err = cudaMalloc(&d_day_counts, num_days * sizeof(int));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); return -3; }
|
||||
|
||||
err = cudaMalloc(&d_day_indices, num_days * sizeof(long long));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); cudaFree(d_day_counts); return -4; }
|
||||
|
||||
err = cudaMalloc(&d_out_stats, num_days * sizeof(GpuDayStats));
|
||||
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); cudaFree(d_day_counts); cudaFree(d_day_indices); return -5; }
|
||||
|
||||
cudaEventRecord(stop_malloc);
|
||||
cudaEventSynchronize(stop_malloc);
|
||||
|
||||
float time_malloc_ms = 0;
|
||||
cudaEventElapsedTime(&time_malloc_ms, start_malloc, stop_malloc);
|
||||
|
||||
// === ИЗМЕРЕНИЕ memcpy H->D ===
|
||||
cudaEventRecord(start_transfer);
|
||||
|
||||
err = cudaMemcpy(d_records, h_records, num_records * sizeof(GpuRecord), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -10;
|
||||
|
||||
err = cudaMemcpy(d_day_offsets, h_day_offsets, num_days * sizeof(int), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -11;
|
||||
|
||||
err = cudaMemcpy(d_day_counts, h_day_counts, num_days * sizeof(int), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -12;
|
||||
|
||||
err = cudaMemcpy(d_day_indices, h_day_indices, num_days * sizeof(long long), cudaMemcpyHostToDevice);
|
||||
if (err != cudaSuccess) return -13;
|
||||
|
||||
cudaEventRecord(stop_transfer);
|
||||
cudaEventSynchronize(stop_transfer);
|
||||
|
||||
float time_transfer_ms = 0;
|
||||
cudaEventElapsedTime(&time_transfer_ms, start_transfer, stop_transfer);
|
||||
|
||||
// === ИЗМЕРЕНИЕ kernel ===
|
||||
const int THREADS_PER_BLOCK = 256;
|
||||
int num_blocks = (num_days + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
|
||||
|
||||
cudaEventRecord(start_kernel);
|
||||
|
||||
aggregate_kernel<<<num_blocks, THREADS_PER_BLOCK>>>(
|
||||
d_records, num_records,
|
||||
d_day_offsets, d_day_counts, d_day_indices,
|
||||
num_days, d_out_stats
|
||||
);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (err != cudaSuccess) {
|
||||
cudaFree(d_records);
|
||||
cudaFree(d_day_offsets);
|
||||
cudaFree(d_day_counts);
|
||||
cudaFree(d_day_indices);
|
||||
cudaFree(d_out_stats);
|
||||
return -7;
|
||||
}
|
||||
|
||||
cudaEventRecord(stop_kernel);
|
||||
cudaEventSynchronize(stop_kernel);
|
||||
|
||||
float time_kernel_ms = 0;
|
||||
cudaEventElapsedTime(&time_kernel_ms, start_kernel, stop_kernel);
|
||||
|
||||
// === ИЗМЕРЕНИЕ memcpy D->H ===
|
||||
cudaEventRecord(start_copy_back);
|
||||
cudaMemcpy(h_out_stats, d_out_stats, num_days * sizeof(GpuDayStats), cudaMemcpyDeviceToHost);
|
||||
cudaEventRecord(stop_copy_back);
|
||||
cudaEventSynchronize(stop_copy_back);
|
||||
|
||||
float time_copy_back_ms = 0;
|
||||
cudaEventElapsedTime(&time_copy_back_ms, start_copy_back, stop_copy_back);
|
||||
|
||||
// === ИЗМЕРЕНИЕ cudaFree ===
|
||||
cudaEventRecord(start_free);
|
||||
|
||||
cudaFree(d_records);
|
||||
cudaFree(d_day_offsets);
|
||||
cudaFree(d_day_counts);
|
||||
cudaFree(d_day_indices);
|
||||
cudaFree(d_out_stats);
|
||||
|
||||
cudaEventRecord(stop_free);
|
||||
cudaEventSynchronize(stop_free);
|
||||
|
||||
float time_free_ms = 0;
|
||||
cudaEventElapsedTime(&time_free_ms, start_free, stop_free);
|
||||
|
||||
// Общее время GPU
|
||||
float time_total_ms = time_malloc_ms + time_transfer_ms + time_kernel_ms + time_copy_back_ms + time_free_ms;
|
||||
|
||||
// === Освобождаем события ===
|
||||
double cpu_event_destroy_start = get_time_ms();
|
||||
|
||||
cudaEventDestroy(start_malloc);
|
||||
cudaEventDestroy(stop_malloc);
|
||||
cudaEventDestroy(start_transfer);
|
||||
cudaEventDestroy(stop_transfer);
|
||||
cudaEventDestroy(start_kernel);
|
||||
cudaEventDestroy(stop_kernel);
|
||||
cudaEventDestroy(start_copy_back);
|
||||
cudaEventDestroy(stop_copy_back);
|
||||
cudaEventDestroy(start_free);
|
||||
cudaEventDestroy(stop_free);
|
||||
|
||||
double cpu_event_destroy_ms = get_time_ms() - cpu_event_destroy_start;
|
||||
double cpu_total_ms = get_time_ms() - cpu_total_start;
|
||||
|
||||
// Выводим детальную статистику
|
||||
printf(" GPU Timings (%d records, %d days):\n", num_records, num_days);
|
||||
printf(" cudaMalloc: %7.3f ms\n", time_malloc_ms);
|
||||
printf(" memcpy H->D: %7.3f ms\n", time_transfer_ms);
|
||||
printf(" kernel execution: %7.3f ms\n", time_kernel_ms);
|
||||
printf(" memcpy D->H: %7.3f ms\n", time_copy_back_ms);
|
||||
printf(" cudaFree: %7.3f ms\n", time_free_ms);
|
||||
printf(" GPU TOTAL: %7.3f ms\n", cpu_total_ms);
|
||||
fflush(stdout);
|
||||
|
||||
return 0;
|
||||
}
|
||||
339
src/intervals.cpp
Normal file
339
src/intervals.cpp
Normal file
@@ -0,0 +1,339 @@
|
||||
#include "intervals.hpp"
|
||||
#include <mpi.h>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <sstream>
|
||||
#include <ctime>
|
||||
#include <limits>
|
||||
|
||||
// Вспомогательная структура для накопления min/max в интервале
|
||||
struct IntervalAccumulator {
|
||||
DayIndex start_day;
|
||||
double start_avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
|
||||
void init(const DayStats& day) {
|
||||
start_day = day.day;
|
||||
start_avg = day.avg;
|
||||
open_min = day.open_min;
|
||||
open_max = day.open_max;
|
||||
close_min = day.close_min;
|
||||
close_max = day.close_max;
|
||||
}
|
||||
|
||||
void update(const DayStats& day) {
|
||||
open_min = std::min(open_min, day.open_min);
|
||||
open_max = std::max(open_max, day.open_max);
|
||||
close_min = std::min(close_min, day.close_min);
|
||||
close_max = std::max(close_max, day.close_max);
|
||||
}
|
||||
|
||||
Interval finalize(const DayStats& end_day, double change) const {
|
||||
Interval iv;
|
||||
iv.start_day = start_day;
|
||||
iv.end_day = end_day.day;
|
||||
iv.start_avg = start_avg;
|
||||
iv.end_avg = end_day.avg;
|
||||
iv.change = change;
|
||||
iv.open_min = std::min(open_min, end_day.open_min);
|
||||
iv.open_max = std::max(open_max, end_day.open_max);
|
||||
iv.close_min = std::min(close_min, end_day.close_min);
|
||||
iv.close_max = std::max(close_max, end_day.close_max);
|
||||
return iv;
|
||||
}
|
||||
};
|
||||
|
||||
// Упакованная структура DayStats для MPI передачи (8 doubles)
|
||||
struct PackedDayStats {
|
||||
double day; // DayIndex as double
|
||||
double avg;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
double count; // int64_t as double
|
||||
double valid; // флаг валидности (1.0 = valid, 0.0 = invalid)
|
||||
|
||||
void pack(const DayStats& ds) {
|
||||
day = static_cast<double>(ds.day);
|
||||
avg = ds.avg;
|
||||
open_min = ds.open_min;
|
||||
open_max = ds.open_max;
|
||||
close_min = ds.close_min;
|
||||
close_max = ds.close_max;
|
||||
count = static_cast<double>(ds.count);
|
||||
valid = 1.0;
|
||||
}
|
||||
|
||||
DayStats unpack() const {
|
||||
DayStats ds;
|
||||
ds.day = static_cast<DayIndex>(day);
|
||||
ds.avg = avg;
|
||||
ds.open_min = open_min;
|
||||
ds.open_max = open_max;
|
||||
ds.close_min = close_min;
|
||||
ds.close_max = close_max;
|
||||
ds.count = static_cast<int64_t>(count);
|
||||
return ds;
|
||||
}
|
||||
|
||||
bool is_valid() const { return valid > 0.5; }
|
||||
void set_invalid() { valid = 0.0; }
|
||||
};
|
||||
|
||||
IntervalResult find_intervals_parallel(
|
||||
const std::vector<DayStats>& days,
|
||||
int rank, int size,
|
||||
double threshold)
|
||||
{
|
||||
IntervalResult result;
|
||||
result.compute_time = 0.0;
|
||||
result.wait_time = 0.0;
|
||||
|
||||
if (days.empty()) {
|
||||
// Передаём невалидный DayStats следующему ранку
|
||||
if (rank < size - 1) {
|
||||
PackedDayStats invalid;
|
||||
invalid.set_invalid();
|
||||
MPI_Send(&invalid, 8, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
double compute_start = MPI_Wtime();
|
||||
|
||||
// Определяем, до какого индекса обрабатывать
|
||||
// Для последнего ранка - до конца, для остальных - до предпоследнего дня
|
||||
size_t process_until = (rank == size - 1) ? days.size() : days.size() - 1;
|
||||
|
||||
IntervalAccumulator acc;
|
||||
size_t start_idx = 0;
|
||||
bool have_pending_interval = false;
|
||||
|
||||
// Если не первый ранк - ждём данные от предыдущего
|
||||
if (rank > 0) {
|
||||
double wait_start = MPI_Wtime();
|
||||
|
||||
PackedDayStats received;
|
||||
MPI_Recv(&received, 8, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
result.wait_time = MPI_Wtime() - wait_start;
|
||||
compute_start = MPI_Wtime();
|
||||
|
||||
if (received.is_valid()) {
|
||||
DayStats prev_day = received.unpack();
|
||||
|
||||
// Ищем первый день с индексом > prev_day.day
|
||||
for (start_idx = 0; start_idx < days.size(); start_idx++) {
|
||||
if (days[start_idx].day > prev_day.day) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (start_idx < process_until) {
|
||||
// Инициализируем аккумулятор данными от предыдущего ранка
|
||||
acc.init(prev_day);
|
||||
have_pending_interval = true;
|
||||
|
||||
// Продолжаем строить интервал
|
||||
for (size_t i = start_idx; i < process_until; i++) {
|
||||
acc.update(days[i]);
|
||||
|
||||
double change = std::abs(days[i].avg - acc.start_avg) / acc.start_avg;
|
||||
|
||||
if (change >= threshold) {
|
||||
result.intervals.push_back(acc.finalize(days[i], change));
|
||||
have_pending_interval = false;
|
||||
|
||||
// Начинаем новый интервал
|
||||
start_idx = i + 1;
|
||||
if (start_idx < process_until) {
|
||||
acc.init(days[start_idx]);
|
||||
have_pending_interval = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Предыдущий ранк не передал валидные данные, начинаем с начала
|
||||
if (process_until > 0) {
|
||||
acc.init(days[0]);
|
||||
have_pending_interval = true;
|
||||
start_idx = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Первый ранк - начинаем с первого дня
|
||||
if (process_until > 0) {
|
||||
acc.init(days[0]);
|
||||
have_pending_interval = true;
|
||||
start_idx = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Обрабатываем дни (если ещё не обработали выше)
|
||||
if (rank == 0 && have_pending_interval) {
|
||||
for (size_t i = 1; i < process_until; i++) {
|
||||
acc.update(days[i]);
|
||||
|
||||
double change = std::abs(days[i].avg - acc.start_avg) / acc.start_avg;
|
||||
|
||||
if (change >= threshold) {
|
||||
result.intervals.push_back(acc.finalize(days[i], change));
|
||||
have_pending_interval = false;
|
||||
|
||||
// Начинаем новый интервал
|
||||
start_idx = i + 1;
|
||||
if (start_idx < process_until) {
|
||||
acc.init(days[start_idx]);
|
||||
have_pending_interval = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Для последнего ранка: завершаем последний интервал на последнем дне
|
||||
if (rank == size - 1 && have_pending_interval && !days.empty()) {
|
||||
const auto& last_day = days.back();
|
||||
double change = std::abs(last_day.avg - acc.start_avg) / acc.start_avg;
|
||||
result.intervals.push_back(acc.finalize(last_day, change));
|
||||
}
|
||||
|
||||
result.compute_time = MPI_Wtime() - compute_start;
|
||||
|
||||
// Передаём данные следующему ранку
|
||||
if (rank < size - 1) {
|
||||
PackedDayStats to_send;
|
||||
|
||||
if (have_pending_interval) {
|
||||
// Передаём день, с которого начался незавершённый интервал
|
||||
DayStats start_day;
|
||||
start_day.day = acc.start_day;
|
||||
start_day.avg = acc.start_avg;
|
||||
start_day.open_min = acc.open_min;
|
||||
start_day.open_max = acc.open_max;
|
||||
start_day.close_min = acc.close_min;
|
||||
start_day.close_max = acc.close_max;
|
||||
start_day.count = 0;
|
||||
to_send.pack(start_day);
|
||||
} else if (!days.empty()) {
|
||||
// Интервал завершился, передаём предпоследний день
|
||||
to_send.pack(days[days.size() - 2]);
|
||||
} else {
|
||||
to_send.set_invalid();
|
||||
}
|
||||
|
||||
MPI_Send(&to_send, 8, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
double collect_intervals(
|
||||
std::vector<Interval>& local_intervals,
|
||||
int rank, int size)
|
||||
{
|
||||
double wait_time = 0.0;
|
||||
|
||||
// Упакованный Interval для MPI (9 doubles)
|
||||
// start_day, end_day, open_min, open_max, close_min, close_max, start_avg, end_avg, change
|
||||
|
||||
if (rank == 0) {
|
||||
// Собираем интервалы со всех остальных ранков
|
||||
for (int r = 1; r < size; r++) {
|
||||
double wait_start = MPI_Wtime();
|
||||
|
||||
// Сначала получаем количество интервалов
|
||||
int count;
|
||||
MPI_Recv(&count, 1, MPI_INT, r, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
if (count > 0) {
|
||||
std::vector<double> buffer(count * 9);
|
||||
MPI_Recv(buffer.data(), count * 9, MPI_DOUBLE, r, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
|
||||
// Распаковываем
|
||||
for (int i = 0; i < count; i++) {
|
||||
Interval iv;
|
||||
iv.start_day = static_cast<DayIndex>(buffer[i * 9 + 0]);
|
||||
iv.end_day = static_cast<DayIndex>(buffer[i * 9 + 1]);
|
||||
iv.open_min = buffer[i * 9 + 2];
|
||||
iv.open_max = buffer[i * 9 + 3];
|
||||
iv.close_min = buffer[i * 9 + 4];
|
||||
iv.close_max = buffer[i * 9 + 5];
|
||||
iv.start_avg = buffer[i * 9 + 6];
|
||||
iv.end_avg = buffer[i * 9 + 7];
|
||||
iv.change = buffer[i * 9 + 8];
|
||||
local_intervals.push_back(iv);
|
||||
}
|
||||
}
|
||||
|
||||
wait_time += MPI_Wtime() - wait_start;
|
||||
}
|
||||
|
||||
// Сортируем по start_day
|
||||
std::sort(local_intervals.begin(), local_intervals.end(),
|
||||
[](const Interval& a, const Interval& b) {
|
||||
return a.start_day < b.start_day;
|
||||
});
|
||||
} else {
|
||||
// Отправляем свои интервалы на ранк 0
|
||||
int count = static_cast<int>(local_intervals.size());
|
||||
MPI_Send(&count, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
|
||||
|
||||
if (count > 0) {
|
||||
std::vector<double> buffer(count * 9);
|
||||
for (int i = 0; i < count; i++) {
|
||||
const auto& iv = local_intervals[i];
|
||||
buffer[i * 9 + 0] = static_cast<double>(iv.start_day);
|
||||
buffer[i * 9 + 1] = static_cast<double>(iv.end_day);
|
||||
buffer[i * 9 + 2] = iv.open_min;
|
||||
buffer[i * 9 + 3] = iv.open_max;
|
||||
buffer[i * 9 + 4] = iv.close_min;
|
||||
buffer[i * 9 + 5] = iv.close_max;
|
||||
buffer[i * 9 + 6] = iv.start_avg;
|
||||
buffer[i * 9 + 7] = iv.end_avg;
|
||||
buffer[i * 9 + 8] = iv.change;
|
||||
}
|
||||
MPI_Send(buffer.data(), count * 9, MPI_DOUBLE, 0, 2, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
|
||||
return wait_time;
|
||||
}
|
||||
|
||||
std::string day_index_to_date(DayIndex day) {
|
||||
time_t ts = static_cast<time_t>(day) * 86400;
|
||||
struct tm* tm_info = gmtime(&ts);
|
||||
|
||||
std::ostringstream oss;
|
||||
oss << std::setfill('0')
|
||||
<< (tm_info->tm_year + 1900) << "-"
|
||||
<< std::setw(2) << (tm_info->tm_mon + 1) << "-"
|
||||
<< std::setw(2) << tm_info->tm_mday;
|
||||
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
void write_intervals(const std::string& filename, const std::vector<Interval>& intervals) {
|
||||
std::ofstream out(filename);
|
||||
|
||||
out << std::fixed << std::setprecision(2);
|
||||
out << "start_date,end_date,open_min,open_max,close_min,close_max,start_avg,end_avg,change\n";
|
||||
|
||||
for (const auto& iv : intervals) {
|
||||
out << day_index_to_date(iv.start_day) << ","
|
||||
<< day_index_to_date(iv.end_day) << ","
|
||||
<< iv.open_min << ","
|
||||
<< iv.open_max << ","
|
||||
<< iv.close_min << ","
|
||||
<< iv.close_max << ","
|
||||
<< iv.start_avg << ","
|
||||
<< iv.end_avg << ","
|
||||
<< std::setprecision(6) << iv.change << "\n";
|
||||
}
|
||||
}
|
||||
46
src/intervals.hpp
Normal file
46
src/intervals.hpp
Normal file
@@ -0,0 +1,46 @@
|
||||
#pragma once
|
||||
|
||||
#include "day_stats.hpp"
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
// Интервал с изменением >= threshold
|
||||
struct Interval {
|
||||
DayIndex start_day;
|
||||
DayIndex end_day;
|
||||
double open_min;
|
||||
double open_max;
|
||||
double close_min;
|
||||
double close_max;
|
||||
double start_avg;
|
||||
double end_avg;
|
||||
double change;
|
||||
};
|
||||
|
||||
// Результат параллельного построения интервалов
|
||||
struct IntervalResult {
|
||||
std::vector<Interval> intervals;
|
||||
double compute_time; // время вычислений
|
||||
double wait_time; // время ожидания данных от предыдущего ранка
|
||||
};
|
||||
|
||||
// Параллельное построение интервалов с использованием MPI
|
||||
// Каждый ранк обрабатывает свою часть дней и передаёт незавершённый интервал следующему
|
||||
IntervalResult find_intervals_parallel(
|
||||
const std::vector<DayStats>& days,
|
||||
int rank, int size,
|
||||
double threshold = 0.10
|
||||
);
|
||||
|
||||
// Сбор интервалов со всех ранков на ранк 0
|
||||
// Возвращает время ожидания данных
|
||||
double collect_intervals(
|
||||
std::vector<Interval>& local_intervals,
|
||||
int rank, int size
|
||||
);
|
||||
|
||||
// Вывод интервалов в файл
|
||||
void write_intervals(const std::string& filename, const std::vector<Interval>& intervals);
|
||||
|
||||
// Преобразование DayIndex в строку даты (YYYY-MM-DD)
|
||||
std::string day_index_to_date(DayIndex day);
|
||||
92
src/main.cpp
Normal file
92
src/main.cpp
Normal file
@@ -0,0 +1,92 @@
|
||||
#include <mpi.h>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <iomanip>
|
||||
|
||||
#include "csv_loader.hpp"
|
||||
#include "record.hpp"
|
||||
#include "day_stats.hpp"
|
||||
#include "aggregation.hpp"
|
||||
#include "intervals.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
MPI_Init(&argc, &argv);
|
||||
double total_start = MPI_Wtime();
|
||||
|
||||
int rank, size;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &size);
|
||||
|
||||
// Параллельное чтение данных
|
||||
double read_start = MPI_Wtime();
|
||||
std::vector<Record> records = load_csv_parallel(rank, size);
|
||||
double read_time = MPI_Wtime() - read_start;
|
||||
|
||||
std::cout << "Rank " << rank
|
||||
<< ": read " << records.size() << " records"
|
||||
<< " in " << std::fixed << std::setprecision(3) << read_time << " sec"
|
||||
<< std::endl;
|
||||
|
||||
// Агрегация по дням
|
||||
double agg_start = MPI_Wtime();
|
||||
std::vector<DayStats> days = aggregate_days(records);
|
||||
double agg_time = MPI_Wtime() - agg_start;
|
||||
|
||||
std::cout << "Rank " << rank
|
||||
<< ": aggregated " << days.size() << " days"
|
||||
<< " [" << (days.empty() ? 0 : days.front().day)
|
||||
<< ".." << (days.empty() ? 0 : days.back().day) << "]"
|
||||
<< " in " << std::fixed << std::setprecision(3) << agg_time << " sec"
|
||||
<< std::endl;
|
||||
|
||||
// Удаляем крайние дни (могут быть неполными из-за параллельного чтения)
|
||||
trim_edge_days(days, rank, size);
|
||||
|
||||
std::cout << "Rank " << rank
|
||||
<< ": after trim " << days.size() << " days"
|
||||
<< " [" << (days.empty() ? 0 : days.front().day)
|
||||
<< ".." << (days.empty() ? 0 : days.back().day) << "]"
|
||||
<< std::endl;
|
||||
|
||||
// Параллельное построение интервалов
|
||||
IntervalResult iv_result = find_intervals_parallel(days, rank, size);
|
||||
|
||||
std::cout << "Rank " << rank
|
||||
<< ": found " << iv_result.intervals.size() << " intervals"
|
||||
<< ", compute " << std::fixed << std::setprecision(6) << iv_result.compute_time << " sec"
|
||||
<< ", wait " << iv_result.wait_time << " sec"
|
||||
<< std::endl;
|
||||
|
||||
// Сбор интервалов на ранке 0
|
||||
double collect_wait = collect_intervals(iv_result.intervals, rank, size);
|
||||
|
||||
if (rank == 0) {
|
||||
std::cout << "Rank 0: collected " << iv_result.intervals.size() << " total intervals"
|
||||
<< ", wait " << std::fixed << std::setprecision(3) << collect_wait << " sec"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// Запись результатов в файл (только ранк 0)
|
||||
if (rank == 0) {
|
||||
double write_start = MPI_Wtime();
|
||||
write_intervals("result.csv", iv_result.intervals);
|
||||
double write_time = MPI_Wtime() - write_start;
|
||||
|
||||
std::cout << "Rank 0: wrote result.csv"
|
||||
<< " in " << std::fixed << std::setprecision(3) << write_time << " sec"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// Вывод общего времени выполнения
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
double total_time = MPI_Wtime() - total_start;
|
||||
if (rank == 0) {
|
||||
std::cout << "Total execution time: "
|
||||
<< std::fixed << std::setprecision(3)
|
||||
<< total_time << " sec" << std::endl;
|
||||
}
|
||||
|
||||
MPI_Finalize();
|
||||
return 0;
|
||||
}
|
||||
127
src/utils.cpp
Normal file
127
src/utils.cpp
Normal file
@@ -0,0 +1,127 @@
|
||||
#include "utils.hpp"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
#include <numeric>
|
||||
|
||||
std::map<DayIndex, std::vector<Record>> group_by_day(const std::vector<Record>& recs) {
|
||||
std::map<DayIndex, std::vector<Record>> days;
|
||||
|
||||
for (const auto& r : recs) {
|
||||
DayIndex day = static_cast<DayIndex>(r.timestamp) / 86400;
|
||||
days[day].push_back(r);
|
||||
}
|
||||
|
||||
return days;
|
||||
}
|
||||
|
||||
std::vector<std::vector<DayIndex>> split_days(const std::map<DayIndex, std::vector<Record>>& days, int parts) {
|
||||
std::vector<std::vector<DayIndex>> out(parts);
|
||||
|
||||
int i = 0;
|
||||
for (auto& kv : days) {
|
||||
out[i % parts].push_back(kv.first);
|
||||
i++;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
int get_num_cpu_threads() {
|
||||
const char* env_threads = std::getenv("NUM_CPU_THREADS");
|
||||
int num_cpu_threads = 1;
|
||||
if (env_threads) {
|
||||
num_cpu_threads = std::atoi(env_threads);
|
||||
if (num_cpu_threads < 1) num_cpu_threads = 1;
|
||||
}
|
||||
return num_cpu_threads;
|
||||
}
|
||||
|
||||
std::string get_env(const char* name) {
|
||||
const char* env = std::getenv(name);
|
||||
if (!env) {
|
||||
throw std::runtime_error(std::string("Environment variable not set: ") + name);
|
||||
}
|
||||
return std::string(env);
|
||||
}
|
||||
|
||||
std::string get_data_path() {
|
||||
return get_env("DATA_PATH");
|
||||
}
|
||||
|
||||
std::vector<int> get_data_read_shares() {
|
||||
std::vector<int> shares;
|
||||
std::stringstream ss(get_env("DATA_READ_SHARES"));
|
||||
std::string item;
|
||||
while (std::getline(ss, item, ',')) {
|
||||
shares.push_back(std::stoi(item));
|
||||
}
|
||||
return shares;
|
||||
}
|
||||
|
||||
int64_t get_read_overlap_bytes() {
|
||||
return std::stoll(get_env("READ_OVERLAP_BYTES"));
|
||||
}
|
||||
|
||||
int64_t get_file_size(const std::string& path) {
|
||||
std::ifstream file(path, std::ios::binary | std::ios::ate);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("Cannot open file: " + path);
|
||||
}
|
||||
return static_cast<int64_t>(file.tellg());
|
||||
}
|
||||
|
||||
ByteRange calculate_byte_range(int rank, int size, int64_t file_size,
|
||||
const std::vector<int>& shares, int64_t overlap_bytes) {
|
||||
// Если shares пустой или не соответствует size, используем равные доли
|
||||
std::vector<int> effective_shares;
|
||||
if (shares.size() == static_cast<size_t>(size)) {
|
||||
effective_shares = shares;
|
||||
} else {
|
||||
effective_shares.assign(size, 1);
|
||||
}
|
||||
|
||||
int total_shares = std::accumulate(effective_shares.begin(), effective_shares.end(), 0);
|
||||
|
||||
// Вычисляем базовые границы для каждого ранка
|
||||
int64_t bytes_per_share = file_size / total_shares;
|
||||
|
||||
int64_t base_start = 0;
|
||||
for (int i = 0; i < rank; i++) {
|
||||
base_start += bytes_per_share * effective_shares[i];
|
||||
}
|
||||
|
||||
int64_t base_end = base_start + bytes_per_share * effective_shares[rank];
|
||||
|
||||
// Применяем overlap
|
||||
ByteRange range;
|
||||
|
||||
if (rank == 0) {
|
||||
// Первый ранк: начинаем с 0, добавляем overlap в конце
|
||||
range.start = 0;
|
||||
range.end = std::min(base_end + overlap_bytes, file_size);
|
||||
} else if (rank == size - 1) {
|
||||
// Последний ранк: вычитаем overlap в начале, читаем до конца файла
|
||||
range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));
|
||||
range.end = file_size;
|
||||
} else {
|
||||
// Промежуточные ранки: overlap с обеих сторон
|
||||
range.start = std::max(base_start - overlap_bytes, static_cast<int64_t>(0));
|
||||
range.end = std::min(base_end + overlap_bytes, file_size);
|
||||
}
|
||||
|
||||
return range;
|
||||
}
|
||||
|
||||
void trim_edge_days(std::vector<DayStats>& days, int rank, int size) {
|
||||
if (days.empty()) return;
|
||||
|
||||
if (rank == 0) {
|
||||
days.pop_back();
|
||||
} else if (rank == size - 1) {
|
||||
days.erase(days.begin());
|
||||
} else {
|
||||
days.pop_back();
|
||||
days.erase(days.begin());
|
||||
}
|
||||
}
|
||||
38
src/utils.hpp
Normal file
38
src/utils.hpp
Normal file
@@ -0,0 +1,38 @@
|
||||
#pragma once
|
||||
|
||||
#include "record.hpp"
|
||||
#include "day_stats.hpp"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <cstdlib>
|
||||
#include <cstdint>
|
||||
|
||||
// Группировка записей по дням
|
||||
std::map<DayIndex, std::vector<Record>> group_by_day(const std::vector<Record>& recs);
|
||||
std::vector<std::vector<DayIndex>> split_days(const std::map<DayIndex, std::vector<Record>>& days, int parts);
|
||||
|
||||
// Чтение переменных окружения
|
||||
int get_num_cpu_threads();
|
||||
std::string get_data_path();
|
||||
std::vector<int> get_data_read_shares();
|
||||
int64_t get_read_overlap_bytes();
|
||||
|
||||
// Структура для хранения диапазона байт для чтения
|
||||
struct ByteRange {
|
||||
int64_t start;
|
||||
int64_t end; // exclusive
|
||||
};
|
||||
|
||||
// Вычисляет диапазон байт для конкретного ранка
|
||||
ByteRange calculate_byte_range(int rank, int size, int64_t file_size,
|
||||
const std::vector<int>& shares, int64_t overlap_bytes);
|
||||
|
||||
// Получение размера файла
|
||||
int64_t get_file_size(const std::string& path);
|
||||
|
||||
// Удаляет крайние дни, которые могут быть неполными из-за параллельного чтения
|
||||
// rank 0: удаляет последний день
|
||||
// последний rank: удаляет первый день
|
||||
// промежуточные: удаляют первый и последний дни
|
||||
void trim_edge_days(std::vector<DayStats>& days, int rank, int size);
|
||||
Reference in New Issue
Block a user